Correlating droplet size with temperature changes in electrospray source by optical methods.

Anal Chem

†Institut Lumière Matière, UMR5306 Université Claude Bernard Lyon1-CNRS, Université de Lyon, 69622 CEDEX Villeurbanne, France.

Published: August 2015

We investigated how the temperature and size of charged droplets are affected by the electrospray ionization (ESI) process, using in situ measurements involving laser-induced fluorescence and Mie scattering on a thermal gradient focusing ESI source. Rhodamine dyes were employed as temperature indicators using ratiometric intensity-based fluorescence techniques. The results were compared to lifetime-based techniques using tris(2,2'-bipyridyl)dichlororuthenium(II) hexahydrate, [Ru(bpy)3](2+). Both methods gave similar profiles. Nevertheless, the precision and sensitivity were higher for lifetime-based techniques in comparison to intensity-based techniques. Global warming (with ΔT ∼10 K) of the ESI plume is reported while the size of the droplet decreases along the plume. The global warming indicates that the conductive thermal transfer (between the superheated sheath gas and the solvent) is predominant and stronger than the cooling effect due to the evaporation of the droplets, and this outcome is effectively reproduced by a diffusion-controlled evaporation model. Thermal gradient focusing ESI sources therefore appear to be efficient sources for evaporating large amounts of solvent, along with an increase in temperature.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.5b00976DOI Listing

Publication Analysis

Top Keywords

thermal gradient
8
gradient focusing
8
focusing esi
8
lifetime-based techniques
8
global warming
8
correlating droplet
4
droplet size
4
temperature
4
size temperature
4
temperature changes
4

Similar Publications

The composition of the metal-polymer friction pair is carefully considered for interacting with water and hydrogen, ensuring the metals electrode process potential remains below waters in a neutral medium. Simultaneously, adherence to defined chemical composition ratios for the metal-polymer materials is crucial. This analysis is conducted under conditions of thermal stabilization, characterized by a minimal temperature gradient across the rim thickness within an equivalent thermal field.

View Article and Find Full Text PDF

The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.

View Article and Find Full Text PDF

: The functional traits of twigs and leaves are closely related to the ability of plants to cope with heterogeneous environments. The analysis of the characteristics of twigs and leaves and leaf thermal dissipation in riparian plants is of great significance for exploring the light energy allocation and ecological adaptation strategies of plant leaves in heterogeneous habitats. However, there are few studies on the correlation between the twig-leaf characteristics of riparian plants and their heat dissipation in light heterogeneous environments.

View Article and Find Full Text PDF

Effect of Gradient Transition Layer on the Cracking Behavior of Ni60B (NiCrBSi) Coatings by Laser Cladding.

Materials (Basel)

January 2025

State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China.

Laser cladding technology is an effective method for producing wear-resistant coatings on damaged substrates, improving both wear and corrosion resistance, which extends the service life of components. However, the fabrication of hard and brittle materials is highly susceptible to the problem of cracking. Using gradient transition layers is an effective strategy to mitigate the challenge of achieving crack-free laser-melted wear-resistant coatings.

View Article and Find Full Text PDF

This paper presents a comprehensive numerical investigation to simulate heat transfer and residual stress formation of Ti-6Al-4V alloy during the Laser Powder Bed Fusion process, using a finite element model (FEM). The FEM was developed with a focus on the effects of key process parameters, including laser scanning velocity, laser power, hatch space, and scanning pattern in single-layer scanning. The model was validated against experimental data, demonstrating good agreement in terms of temperature profiles and melt pool dimensions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!