The plant pathogen is very difficult to control due to its persistent, long-living sclerotial structures in soil. Sclerotia are the main source of infection for diseases, which cause high yield losses on a broad host range world-wide. Little is known about micro-organisms associated with sclerotia in soil. Therefore, microbial communities of greenhouse and field incubated sclerotia were analysed by a multiphasic approach. Using microbial fingerprints performed by PCR-SSCP, sclerotia-associated bacterial communities showed a high diversity, whereas only a few fungi could be detected. Statistical analysis of fingerprints revealed the influence of soil types, incubation conditions (greenhouse, field), and incubation time (5 and 12 weeks) on the bacterial as well as fungal community. No significant differences were found for the microbial community associated with different anastomosis sub-groups (AG 1-IB and AG 1-IC). sclerotia are an interesting bio-resource: high proportions of fungal cell-wall degrading isolates as well as those with antagonistic activity towards were found. While a fraction of 28.4% of sclerotia-associated bacteria (=40 isolates) with antagonistic properties was determined, only 4.4% (=6 isolates) of the fungal isolates were antagonistic. We identified strong antagonists of the genera , , , and , which can be used as biological control agents incorporated in soil or applied to host plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4461151PMC
http://dx.doi.org/10.1016/j.apsoil.2011.03.006DOI Listing

Publication Analysis

Top Keywords

microbial communities
8
greenhouse field
8
isolates antagonistic
8
sclerotia
5
impact biotic
4
biotic a-biotic
4
a-biotic parameters
4
parameters structure
4
structure function
4
microbial
4

Similar Publications

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease often treated with glucocorticoids, which can lead to complications such as osteoporosis and an increased infection risk. Hence, identifying safe and effective treatment strategies is crucial. has shown promise in improving immune disorders.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is a highly prevalent condition with complications such as constipation, inflammation, and dietary restrictions. Gut microbiota is an ecosystem of trillions of bacteria and other microorganisms such as viruses, fungi, and other eukaryotes. This review aimed to analyze the correlation between CKD and the microbiota.

View Article and Find Full Text PDF

The gut microbiome, a complex ecosystem of microorganisms in the digestive tract, has emerged as a critical factor in human health, influencing metabolic, immune, and neurological functions. This review explores the connection between the gut microbiome and orthopedic health, examining how gut microbes impact bone density, joint integrity, and skeletal health. It highlights mechanisms linking gut dysbiosis to inflammation in conditions such as rheumatoid arthritis and osteoarthritis, suggesting microbiome modulation as a potential therapeutic strategy.

View Article and Find Full Text PDF

During the late laying period, the intestinal barrier of laying hens is susceptible to damage, resulting in enteric infections and even systemic inflammatory responses, posing a major challenge for the poultry industry. Therefore, it is crucial to investigate methods for addressing intestinal inflammation in late laying hens. In order to maximize the production potential of egg laying chickens, farmers usually use various feed additives to prevent damage to the intestinal barrier.

View Article and Find Full Text PDF

Introduction: Postpartum dairy cows are susceptible to negative energy balance caused by decreased feed intake and the initiation of lactation. Sijunzi San, a famous Chinese traditional herbal formulation, can promote gastrointestinal digestion and absorption and improve disorders of intestinal microbiota. Therefore, we hypothesized that Sijunzi San might alleviate negative energy balance in postpartum dairy cows by modulating the structure of the rumen microbiota and enhancing its fermentation capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!