Aims: Excitation-contraction coupling in cardiomyocytes requires the proper targeting and retention of membrane proteins to unique domains by adaptor proteins like ankyrin-B. While ankyrin-B has been shown to interact with a variety of membrane and structural proteins located at different subcellular domains in cardiomyocytes, what regulates the specificity of ankyrin-B for particular interacting proteins remains elusive.
Methods And Results: Here, we report the identification of two novel ankyrin-B isoforms AnkB-188 and AnkB-212 in human, rat, and mouse hearts. Novel cDNAs for both isoforms were isolated by long-range PCR of reverse-transcribed mRNA isolated from human ventricular tissue. The isoforms can be discriminated based on their function and subcellular distribution in cardiomyocytes. Heterologous overexpression of AnkB-188 increases sodium-calcium exchanger (NCX) membrane expression and current, while selective knockdown of AnkB-188 in cardiomyocytes reduces NCX expression and localization in addition to causing irregular contraction rhythms. Using an isoform-specific antibody, we demonstrate that the expression of AnkB-212 is restricted to striated muscles and is localized to the M-line of cardiomyocytes by interacting with obscurin. Selective knockdown of AnkB-212 significantly attenuates the expression of endogenous ankyrin-B at the M-line but does not disrupt NCX expression at transverse tubules in cardiomyocytes.
Conclusion: The identification and characterization of two functionally distinct ankyrin-B isoforms in heart provide compelling evidence that alternative splicing of the ANK2 gene regulates the fidelity of ankyrin-B interactions with proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4540146 | PMC |
http://dx.doi.org/10.1093/cvr/cvv184 | DOI Listing |
Curr Opin Neurobiol
December 2024
Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Northwestern University, Center for Autism and Neurodevelopment, Chicago, IL, 60611, USA.
Cereb Cortex
October 2023
Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Campus Box 7260, Chapel Hill, NC, 27599, United States.
Postnatal regulation of dendritic spine formation and refinement in cortical pyramidal neurons is critical for excitatory/inhibitory balance in neocortical networks. Recent studies have identified a selective spine pruning mechanism in the mouse prefrontal cortex mediated by class 3 Semaphorins and the L1 cell adhesion molecules, neuron-glia related cell adhesion molecule, Close Homolog of L1, and L1. L1 cell adhesion molecules bind Ankyrin B, an actin-spectrin adaptor encoded by Ankyrin2, a high-confidence gene for autism spectrum disorder.
View Article and Find Full Text PDFPostnatal regulation of dendritic spine formation and refinement in cortical pyramidal neurons is critical for excitatory/inhibitory balance in neocortical networks. Recent studies have identified a selective spine pruning mechanism in the mouse prefrontal cortex (PFC) mediated by class 3 Semaphorins and the L1-CAM cell adhesion molecules Neuron-glia related CAM (NrCAM), Close Homolog of L1 (CHL1), and L1. L1-CAMs bind Ankyrin B (AnkB), an actin-spectrin adaptor encoded by ( ), a high confidence gene for autism spectrum disorder (ASD).
View Article and Find Full Text PDFFront Neuroanat
March 2023
Department of Biochemistry and Biophysics, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, NC, United States.
A novel function for the L1 cell adhesion molecule, which binds the actin adaptor protein Ankyrin was identified in constraining dendritic spine density on pyramidal neurons in the mouse neocortex. In an L1-null mouse mutant increased spine density was observed on apical but not basal dendrites of pyramidal neurons in diverse cortical areas (prefrontal cortex layer 2/3, motor cortex layer 5, visual cortex layer 4. The Ankyrin binding motif (FIGQY) in the L1 cytoplasmic domain was critical for spine regulation, as demonstrated by increased spine density and altered spine morphology in the prefrontal cortex of a mouse knock-in mutant (L1YH) harboring a tyrosine (Y) to histidine (H) mutation in the FIGQY motif, which disrupted L1-Ankyrin association.
View Article and Find Full Text PDFFront Cardiovasc Med
August 2022
Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.
The gene encodes for ankyrin-B (ANKB), one of 3 members of the ankyrin family of proteins, whose name is derived from the Greek word for anchor. ANKB was originally identified in the brain (B denotes "brain") but has become most widely known for its role in cardiomyocytes as a scaffolding protein for ion channels and transporters, as well as an interacting protein for structural and signaling proteins. Certain loss-of-function variants are associated with a primarily cardiac-presenting autosomal-dominant condition with incomplete penetrance and variable expressivity characterized by a predisposition to supraventricular and ventricular arrhythmias, arrhythmogenic cardiomyopathy, congenital and adult-onset structural heart disease, and sudden death.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!