Genome-scale metabolic network reconstructions and constraint-based analyses are powerful methods that have the potential to make functional predictions about microbial communities. Genome-scale metabolic networks are used to characterize the metabolic functions of microbial communities via several techniques including species compartmentalization, separating species-level and community-level objectives, dynamic analysis, the 'enzyme-soup' approach, multiscale modeling, and others. There are many challenges in the field, including a need for tools that accurately assign high-level omics signals to individual community members, the need for improved automated network reconstruction methods, and novel algorithms for integrating omics data and engineering communities. As technologies and modeling frameworks improve, we expect that there will be corresponding advances in the fields of ecology, health science, and microbial community engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575871 | PMC |
http://dx.doi.org/10.1002/wsbm.1308 | DOI Listing |
Am J Gastroenterol
December 2024
Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden.
Background And Aims: Oral microbiota may contribute to the development of upper gastrointestinal (UGI) disorders. We aimed to study the association between the microbiome of saliva, subgingival and buccal mucosa, and UGI disorders, particularly precancerous lesions. We also aimed to determine which oral site might serve as the most effective biomarker for UGI disorders.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Kidney Transplantation, Nephropathy Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaan'xi, China.
Increasing evidence suggests that dysbiosis of gut microbiota exacerbates chronic kidney disease (CKD) progression. Curcumin (CUR) has been reported to alleviate renal fibrosis in animal models of CKD. However, the relationship between CUR and gut microbiome in CKD remains unclear.
View Article and Find Full Text PDFPLoS One
January 2025
Fujian Key Laboratory of Lung Stem Cells, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
Introduction: Pulmonary fibrosis (PF) is a chronic and irreversible interstitial lung disease characterized by a lack of effective therapies. Mesenchymal stem cells (MSCs) have garnered significant interest in the realm of lung regeneration due to their abundant availability, ease of isolation, and capacity for expansion. The objective of our study was to investigate the potential therapeutic role of umbilical cord-derived MSCs (UC-MSCs) in the management of PF, with a focus on the alterations in the gut microbiota and its metabolites during the use of UC-MSCs for the treatment of pulmonary fibrosis, as well as the possible mechanisms involved.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Respiratory Medicine in Zhejiang Hospital, Hangzhou, Zhejiang Province, China.
Objectives: The aim of the study was to explore the alteration of microbiota and SCFA in gut and inflammation in acute exacerbation chronic obstructive pulmonary disease (AECOPD) patients, and to test the hypothesis that a disorder of gut microbiota will lead to the alteration of SCFA, which will aggravate inflammation in AECOPD patients.
Methods And Results: 24 patients with AECOPD and 18 healthy volunteers were included in the study. Gut microbiota were analyzed by 16S rDNA and serum was used to detect levels of inflammatory factors by ELISA.
Proc Natl Acad Sci U S A
January 2025
Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom.
The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in attackers shape resistance evolution in susceptible competitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!