Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
An enzyme that catalyzes the formose reaction, termed "formolase", was recently engineered through a combination of computational protein design and directed evolution. We have investigated the kinetic role of the computationally designed residues and further characterized the enzyme's product profile. Kinetic studies illustrated that the computationally designed mutations were synergistic in their contributions towards enhancing activity. Mass spectrometry revealed that the engineered enzyme produces two products of the formose reaction-dihydroxyacetone and glycolaldehyde-with the product profile dependent on the formaldehyde concentration. We further explored the effects of this product profile on the thermodynamics and yield of the overall carbon assimilation from the formolase pathway to help guide future efforts to engineer this pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbic.201500228 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!