The large subunit of ADP glucose pyrophosphorylase (AGPase), the rate limiting enzyme in starch biosynthesis in Triticum aestivum L., is encoded by the ADP glucose pyrophosphorylase large subunit (AGP-L) gene. This was the first report on the development of three genome-specific primer sets for isolating the complete genomic sequence of all three homoeologous AGP-L genes on group 1 chromosomes. All three AGP-L genes consisted of 15 introns and 15 exons. The lengths of the structural genes from start to stop codon were 3334 bp for AGP-L-A1, 3351 bp for AGP-L-B1, and 3340 bp for AGP-L-D1. The coding region was 1569 bases long in all three genomes. All three AGP-L genes encoded 522 amino acid residues including the transit peptide sequences with 62 amino acid residues and the mature protein with 460 amino acid residues. The mature protein of three AGP-L genes was highly conserved. Three AGP-L genes were sequenced in 47 diverse spring and winter wheat genotypes. One and two haplotypes were found for AGP-L-D1 and AGP-L-A1, respectively. In total, 67 SNPs (single nucleotide polymorphisms) and 13 indels (insertions or deletions) forming five haplotypes were identified for AGP-L-B1. All 13 indels and 58 of the 67 SNPs among the 47 genotypes were located in the non-coding regions, while the remaining nine SNPs were synonymous substitutions in the coding region. Significant LD was found among the 45 SNPs and ten indels located from intron 2 to intron 3. Association analysis indicated that four SNPs were strongly associated with seed number per spike and thousand kernel weight.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s13353-015-0298-1DOI Listing

Publication Analysis

Top Keywords

agp-l genes
20
three agp-l
16
large subunit
12
amino acid
12
acid residues
12
triticum aestivum
8
adp glucose
8
glucose pyrophosphorylase
8
coding region
8
residues mature
8

Similar Publications

Article Synopsis
  • * In the study, Z636×R7 (amphidiploid) showed higher total starch and gliadin/glutenin content compared to its parent strains, R7 and durum wheat (Z636), indicating that polyploidy may enhance certain qualities of wheat.
  • * Transcriptome analysis revealed significant gene expression differences related to carbon metabolism and amino acid biosynthesis among the strains, suggesting that polyploidization has a complex effect on the formation
View Article and Find Full Text PDF

Starch is synthesized from a series of reactions catalyzed by enzymes. ADP-glucose pyrophosphorylase (AGPase) initiates the synthesis pathway and synthesizes ADP-glucose, the substrate of starch synthase (SS), of which SSIV is an isoform. Mutations of the AGPase subunit and SSIV-coding genes affect starch content and cause variation in the number of granules.

View Article and Find Full Text PDF

Identification and Expression Analysis of Wheat Genes.

Front Genet

January 2018

National Engineering Laboratory for Wheat and Maize, Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China.

The 14-3-3 gene family members play key roles in various cellular processes. However, little is known about the numbers and roles of 14-3-3 genes in wheat. The aims of this study were to identify numbers in wheat by searching its whole genome through blast, to study the phylogenetic relationships with other plant species and to discuss the functions of .

View Article and Find Full Text PDF

ADP-glucose pyrophosphorylase, comprising two small subunits and two large subunits, is considered a key enzyme in the endosperm starch synthesis pathway in wheat (Triticum aestivum L.). Two genes, TaAGP-S1-7A and TaAGP-L-1B, were investigated in this study.

View Article and Find Full Text PDF

ADP-glucose pyrophosphorylase (AGP), which consists of two large subunits (AGP-L) and two small subunits (AGP-S), controls the rate-limiting step in the starch biosynthetic pathway. In this study, a full-length open reading frame (ORF) of AGP-L gene (named as Agp2) in wheat and a series of Agp2 gene sequences in wheat relatives were isolated. The coding region of Agp2 contained 15 exons and 14 introns including a full-length ORF of 1566 nucleotides, and the deduced protein contained 522 amino acids (57.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!