The disposal of slag generated by the steel industry can have negative consequences upon the surrounding aquatic environment by the generation of high pH waters, leaching of potentially problematic trace metals, and rapid rates of calcite precipitation which smother benthic habitats. A 36-year dataset was collated from the long-term ambient monitoring of physicochemical parameters and elemental concentrations of samples from two steel slag leachate-affected watercourses in northern England. Waters were typified by elevated pH (>10), high alkalinity, and were rich in dissolved metals (e.g. calcium (Ca), aluminium (Al), and zinc (Zn)). Long-term trend analysis was performed upon pH, alkalinity, and Ca concentration which, in addition to Ca flux calculations, were used to highlight the longevity of pollution arising as a result of the dumping and subsequent leaching of steel slags. Declines in calcium and alkalinity have been modest over the monitoring period and not accompanied by significant declines in water pH. If the monotonic trends of decline in alkalinity and calcium continue in the largest of the receiving streams, it will be in the region of 50-80 years before calcite precipitation would be expected to be close to baseline levels, where ecological impacts would be negligible.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4483270 | PMC |
http://dx.doi.org/10.1007/s10661-015-4693-1 | DOI Listing |
Sci Rep
January 2025
Department of Civil Engineering, Delhi Technological University, New Delhi, 110089, India.
Soil reinforcement is one of the techniques used to enhance the engineer characteristics of the soil. Various techniques can be employed to stabilise problematic soils, such as soft clay. These include the utilisation of portland cement, lime, fly ash, ground freezing, jet grouting, prefabricated vertical drains, and thermal approaches.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via U. Terracini 28, 40131 Bologna, BO, Italy.
The growing demand for sustainable infrastructure has increased interest in eco-friendly design solutions such as porous asphalt (PA) pavements, which manage stormwater runoff and mitigate urban heat islands, and warm mix asphalt (WMA), which reduces energy consumption and emissions during production. This study evaluates the mechanical and environmental performance of four warm mix porous asphalt (WPA) mixtures incorporating recycled materials and by-products: reclaimed asphalt pavement (RAP), aramid pulp fibres, and electric arc furnace (EAF) steel slag. A Life Cycle Assessment (LCA) with a cradle-to-cradle approach was conducted to comprehensively assess environmental impacts.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland.
The modern metallurgical industry produces approximately 90% of the volume of all produced steel; for this, integrated technology based on fossil materials such as coal, fluxes, and especially iron ore is used. This industry generates large amounts of waste and by-products at almost all stages of production. Alternative iron and steel production technologies based on iron ore, methane, or pure hydrogen are also not waste-free.
View Article and Find Full Text PDFLow Carbon Mater Green Constr
December 2024
Faculty of Technology, Fiber and Particle Engineering Research Unit, University of Oulu, PO Box 4300, 90014 Oulu, Finland.
Unlabelled: This study explores the use of Electric Arc Furnace (EAF) slag as a sustainable alternative raw material in cement clinker production. The research demonstrates the synthesis of ferrite-rich clinker using EAF slag, achieving a clinker composition of 47% alite, 32% ferrite, and 20% belite while replacing 20% of clinker raw materials i.e.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130012, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin, 130021, China.
Industrial solid wastes like coal fly ash (CFA) and steel slag pose environmental challenges, while the remediation of heavy metal-contaminated water remains a global priority. This study investigates the impact of incorporating steel slag during the synthesis of CFA-based geopolymers (CFAG) on the leaching characteristics of inherent heavy metals in CFA and the Zn adsorption performance of CFAG. Leaching experiments show geopolymerization effectively immobilizes heavy metals including Fe, Cr, As, Cd, and Ti in CFA while having little effect on Mn, V, and Ni.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!