Nonalcoholic steatohepatitis (NASH) is the progressive form of nonalcoholic fatty liver disease and so far is supposed to be related with mitochondrial impairment. Hepatic stimulator substance (HSS) has been defined as a liver-protective factor promoting hepatocyte DNA synthesis and hepatic proliferation after liver intoxication. We previously reported that HSS ameliorated hepatocyte death, probably because of its preservation of mitochondria. This study aims to explore whether HSS could protect carnitine palmitoyl transferase-1 (CPT-1), an essential enzyme responsible for β-oxidation of free fatty acids in mitochondria, from lipotoxicity, thus alleviating hepatic lipid deposition. To test this, the HSS gene was delivered into C57BL/6J mice and efficiently expressed in the liver. NASH mice were prepared with high-fat diet or methionine-choline-deficient diet. The results showed that hepatic inflammation and liver functions were alleviated in the HSS-transfected mice; meanwhile, the activity of CPT-1 was obviously protected. Moreover, oleic acid (OA) treatment resulted in remarkable lipid accumulation in HepG2 cells; this deposition was improved by HSS transfection. Simultaneously, the CPT-1 activity, which was impaired by OA treatment, was profoundly rescued in the HSS-expressing cells. CPT-1 activity was more severely impaired if the OA treatment was combined with S15176, a CPT-1 inhibitor. However, this impairment was effectively reduced by the HSS transfection, and the effect was enhanced by C75, a CPT-1 activator. Interestingly, if the cells were transfected with HSS-siRNA, the preservation of CPT-1 provided by HSS was again diminished. In conclusion, HSS reduces lipotoxicity to mitochondria most likely via preservation of CPT-1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00133.2014 | DOI Listing |
Mol Biol Rep
January 2025
Department of Pharmaceutical Sciences & Technology, BIT Mesra, Ranchi, 835215, India.
Background: Nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (T2DM) are associated with a multifactorial complicated aetiology that is often coexisting and has a strong and distinct connection with cardiovascular diseases (CVDs). In order to accomplish effective and appropriate therapeutic strategies, a deeper understanding of the bidirectional interaction between NAFLD patients, NAFLD patients with T2DM, and NAFLD patients with CVDs is required to control the concomitant rise in prevalence of these conditions worldwide. This article also aims to shed light on the epidemiology and mechanisms behind the relationship between T2DM, NAFLD and the related cardiovascular consequences.
View Article and Find Full Text PDFLife Med
August 2024
Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Changle West Road, Xincheng District, Xi'an, Shaanxi 710032, China.
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver condition, characterized by a spectrum that progresses from simple hepatic steatosis to nonalcoholic steatohepatitis, which may eventually lead to cirrhosis and hepatocellular carcinoma. The precise pathogenic mechanisms underlying NAFLD and its related metabolic disturbances remain elusive. Epigenetic modifications, which entail stable transcriptional changes without altering the DNA sequence, are increasingly recognized as pivotal.
View Article and Find Full Text PDFJ Clin Exp Hepatol
December 2024
BRIC-Translational Health Science and Technology Institute, Faridabad, Haryana, India.
Background/aim: Non-alcoholic fatty liver disease (NAFLD) is a global health concern with limited treatment options. The paucity of predictive models in preclinical settings seems to be one of the limitations of identifying effective medicines. We therefore aimed to develop an model that can display the key hallmarks of NAFLD, such as steatosis, inflammation, and fibrosis.
View Article and Find Full Text PDFeGastroenterology
November 2024
School of Biological Sciences, Queen's University Belfast, Belfast, UK.
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma.
View Article and Find Full Text PDFWorld J Hepatol
January 2025
Department of Gastroenterology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian Province, China.
Background: Recent research indicates that the intestinal microbial community, known as the gut microbiota, may play a crucial role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). To understand this relationship, this study used a comprehensive bibliometric analysis to explore and analyze the currently little-known connection between gut microbiota and NAFLD, as well as new findings and possible future pathways in this field.
Aim: To provide an in-depth analysis of the current focus issues and research developments on the interaction between gut microbiota and NAFLD.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!