Rule-Based Prediction Models of Cytochrome P450 Inhibition.

J Chem Inf Model

‡Graduate Institute of Biomedical Electronics and Bioinformatics and §Department of Computer Science and Information Engineering, National Taiwan University, No. 1 Sec. 4, Roosevelt Road, Taipei, Taiwan 106.

Published: July 2015

Hepatotoxicity, drug-induced liver injury, and competitive Cytochrome P-450 (CYP) isozyme binding are serious problems associated with drug use. It would be favorable to avoid or to understand potential CYP inhibition at the developmental stages. However, current in silico CYP prediction models or available public prediction servers can provide only yes/no classification results for just one or a few CYP enzymes. In this study, we utilized a rule-based C5.0 algorithm with different descriptors, including PaDEL, Mold(2), and PubChem fingerprints, to construct rule-based inhibition prediction models for five major CYP enzymes-CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4-that account for 90% of drug oxidation or hydrolysis. We also developed a rational sampling algorithm for the selection of compounds in the training data set, to enhance the performance of these CYP prediction models. The optimized models include several improved features. First, the final models significantly outperformed all of the currently available models. Second, the final models can also be used for rapid virtual screening of a large set of compounds due to their ruleset-based nature. Moreover, such rule-based prediction models can provide rulesets for structural features related to the five major CYP enzymes. The five most significant rules for CYP inhibition were identified for each CYP enzymes and discussed. An example was chosen for each of the five CYP enzymes to demonstrate how rule-based models can be used to gain insights into structural features that correspond with CYP inhibitions. A newer version of the freely accessible CYP prediction server, CypRules, is presented here as a result of the aforementioned improvements.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.5b00130DOI Listing

Publication Analysis

Top Keywords

prediction models
20
cyp enzymes
16
cyp
12
cyp prediction
12
models
10
rule-based prediction
8
cyp inhibition
8
major cyp
8
final models
8
structural features
8

Similar Publications

Objective: Gallstones have gradually become a highly prevalent digestive disease worldwide. This study aimed to investigate the association of nine different obesity-related indicators (BRI, RFM, BMI, WC, LAP, CMI, VAI, AIP, TyG) with gallstones and to compare their predictive properties for screening gallstones.

Methods: Data for this study were obtained from the National Health and Nutrition Examination Survey (NHANES) for the 2017-2020 cycle, and weighted logistic regression analyses with multi-model adjustment were conducted to explore the association of the nine indicators with gallstones.

View Article and Find Full Text PDF

Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.

Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.

View Article and Find Full Text PDF

Background: Detecting kidney trauma on CT scans can be challenging and is sometimes overlooked. While deep learning (DL) has shown promise in medical imaging, its application to kidney injuries remains underexplored. This study aims to develop and validate a DL algorithm for detecting kidney trauma, using institutional trauma data and the Radiological Society of North America (RSNA) dataset for external validation.

View Article and Find Full Text PDF

Background: Type A aortic dissection (TAAD) remains a significant challenge in cardiac surgery, presenting high risks of adverse outcomes such as permanent neurological dysfunction and mortality despite advances in medical technology and surgical techniques. This study investigates the use of quantitative electroencephalography (QEEG) to monitor and predict neurological outcomes during the perioperative period in TAAD patients.

Methods: This prospective observational study was conducted at the hospital, involving patients undergoing TAAD surgery from February 2022 to January 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!