Hepatotoxicity, drug-induced liver injury, and competitive Cytochrome P-450 (CYP) isozyme binding are serious problems associated with drug use. It would be favorable to avoid or to understand potential CYP inhibition at the developmental stages. However, current in silico CYP prediction models or available public prediction servers can provide only yes/no classification results for just one or a few CYP enzymes. In this study, we utilized a rule-based C5.0 algorithm with different descriptors, including PaDEL, Mold(2), and PubChem fingerprints, to construct rule-based inhibition prediction models for five major CYP enzymes-CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A4-that account for 90% of drug oxidation or hydrolysis. We also developed a rational sampling algorithm for the selection of compounds in the training data set, to enhance the performance of these CYP prediction models. The optimized models include several improved features. First, the final models significantly outperformed all of the currently available models. Second, the final models can also be used for rapid virtual screening of a large set of compounds due to their ruleset-based nature. Moreover, such rule-based prediction models can provide rulesets for structural features related to the five major CYP enzymes. The five most significant rules for CYP inhibition were identified for each CYP enzymes and discussed. An example was chosen for each of the five CYP enzymes to demonstrate how rule-based models can be used to gain insights into structural features that correspond with CYP inhibitions. A newer version of the freely accessible CYP prediction server, CypRules, is presented here as a result of the aforementioned improvements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jcim.5b00130 | DOI Listing |
Int J Surg
January 2025
Department of General Surgery.
Objective: Gallstones have gradually become a highly prevalent digestive disease worldwide. This study aimed to investigate the association of nine different obesity-related indicators (BRI, RFM, BMI, WC, LAP, CMI, VAI, AIP, TyG) with gallstones and to compare their predictive properties for screening gallstones.
Methods: Data for this study were obtained from the National Health and Nutrition Examination Survey (NHANES) for the 2017-2020 cycle, and weighted logistic regression analyses with multi-model adjustment were conducted to explore the association of the nine indicators with gallstones.
Int J Surg
January 2025
Department of Cardiovascular Surgery, Xijing Hospital, Xi'an, Shaanxi, China.
Background: The impact of aortic arch (AA) morphology on the management of the procedural details and the clinical outcomes of the transfemoral artery (TF)-transcatheter aortic valve replacement (TAVR) has not been evaluated. The goal of this study was to evaluate the AA morphology of patients who had TF-TAVR using an artificial intelligence algorithm and then to evaluate its predictive value for clinical outcomes.
Materials And Methods: A total of 1480 consecutive patients undergoing TF-TAVR using a new-generation transcatheter heart valve at 12 institutes were included in this retrospective study.
Int J Surg
January 2025
Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Linkou; Chang Gung University, Taoyuan, Taiwan.
Background: Detecting kidney trauma on CT scans can be challenging and is sometimes overlooked. While deep learning (DL) has shown promise in medical imaging, its application to kidney injuries remains underexplored. This study aims to develop and validate a DL algorithm for detecting kidney trauma, using institutional trauma data and the Radiological Society of North America (RSNA) dataset for external validation.
View Article and Find Full Text PDFInt J Surg
January 2025
Department of Cardio-Thoracic Surgery, Nanjing Drum Tower Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu, China.
Background: Type A aortic dissection (TAAD) remains a significant challenge in cardiac surgery, presenting high risks of adverse outcomes such as permanent neurological dysfunction and mortality despite advances in medical technology and surgical techniques. This study investigates the use of quantitative electroencephalography (QEEG) to monitor and predict neurological outcomes during the perioperative period in TAAD patients.
Methods: This prospective observational study was conducted at the hospital, involving patients undergoing TAAD surgery from February 2022 to January 2023.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!