The evolutionary history of the characters underlying the adaptation of microorganisms to food and biotechnological uses is poorly understood. We undertook comparative genomics to investigate evolutionary relationships of the dairy yeast Geotrichum candidum within Saccharomycotina. Surprisingly, a remarkable proportion of genes showed discordant phylogenies, clustering with the filamentous fungus subphylum (Pezizomycotina), rather than the yeast subphylum (Saccharomycotina), of the Ascomycota. These genes appear not to be the result of Horizontal Gene Transfer (HGT), but to have been specifically retained by G. candidum after the filamentous fungi-yeasts split concomitant with the yeasts' genome contraction. We refer to these genes as SRAGs (Specifically Retained Ancestral Genes), having been lost by all or nearly all other yeasts, and thus contributing to the phenotypic specificity of lineages. SRAG functions include lipases consistent with a role in cheese making and novel endoglucanases associated with degradation of plant material. Similar gene retention was observed in three other distantly related yeasts representative of this ecologically diverse subphylum. The phenomenon thus appears to be widespread in the Saccharomycotina and argues that, alongside neo-functionalization following gene duplication and HGT, specific gene retention must be recognized as an important mechanism for generation of biodiversity and adaptation in yeasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4479816PMC
http://dx.doi.org/10.1038/srep11571DOI Listing

Publication Analysis

Top Keywords

gene retention
12
biodiversity adaptation
8
adaptation yeasts
8
differential gene
4
retention evolutionary
4
evolutionary mechanism
4
mechanism generate
4
generate biodiversity
4
yeasts
4
yeasts evolutionary
4

Similar Publications

Osteogenesis imperfecta (OI) is an inheritable skeletal disorder characterized by bone fragility often caused by pathogenic variants in the COL1A1 gene. Current OI mouse models with a glycine substitution in Col1a1 exhibit excessive severity, thereby limiting long-term pathophysiological analysis and drug effect assessments. To address this limitation, we constructed a novel OI mouse model mimicking a patient with OI type III.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Brain Sciene, National Yang Ming Chiao Tung University, Taipei, Taiwan.

Background: Genome-wide association studies demonstrated that immune suppressive receptor CD33 variants are associated with high susceptibility to developing Alzheimer's disease (AD). Human CD33 (hCD33) regulates microglial immune response and clearance ability. However, the differential regulation of phagocytosis by human and mouse CD33 imposes constraints on utilizing the mouse model for investigating the role of CD33 in AD.

View Article and Find Full Text PDF

Background: The microtubule-associated Tau gene (MAPT) undergoes alternative splicing to produce isoforms with varying combinations of microtubule-binding region (MTBR) repeats (3R, 4R). The MTBR is the predominant region that forms paired helical filaments and neurofibrillary tangles fibrils in disease. Alzheimer's disease (AD) is a mixed Tauopathy containing both 3R and 4R isoforms.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Centre for Studies on Prevention of Alzheimer's disease (StoP-AD Centre), Douglas Mental Health Institute, Montreal, QC, Canada.

Background: Clusterin is a major cholesterol transporter in the central nervous system (CNS) and different SNPs in the CLU gene have been associated with Alzheimer's disease (AD) risk. The rs11136000_T variant in the CLU gene has been shown to decrease the risk of AD. In this work, we investigate the role of the CLU rs11136000_T protective variant and of the clusterin protein throughout different phases of the AD spectrum.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.

Background: The "Recruitment and Retention for Alzheimer's Disease Diversity Genetic Cohorts in the ADSP (READD-ADSP)" is developing a resource to expand ancestral diversity in Alzheimer disease (AD) studies to dissect the genetic architecture of AD across different populations. In addition to US sites, READD-ADSP includes four US sites and nine countries in sub-Saharan Africa through the Africa Dementia Consortium (AfDC). The overall goal of READD-ADSP is to identify genetically driven targets in diverse groups including African Americans and Hispanic/Latinos in US, and Africans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!