Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of the present study was to obtain and to investigate nano forsterite and nano forsterite biocomposites for biomedical application. New self-curing forsterite biocomposites were obtained by mixing nano forsterite powder (5, 15, 30, 50, 70 wt %) with 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (bis-GMA) and triethyleneglycol dimethacrylate (TEGDMA) monomers. The new nano forsterite biocomposites were investigated for mechanical properties: compressive strength (CS) (143-147.12 MPa), compressive modulus (CM) (1.67-2.75 GPa), diametral tensile strength (DTS) (27.33-31.55 MPa), flexural strength (FS) (59.47-83.20 MPa) and flexural modulus (FM) (2.05-8.60 GPa). Increases of CS, DTS, FS with increasing amount of forsterite were observed up to 50 wt %. The highest CM and FM values were registered for 70 wt % and a direct correlation between the forsterite volume fraction (%) was observed. SEM micrographs revealed the morphology of surface of fractured biocomposites after CS test. XPS indicated that these biocomposites promoted the hydroxyapatite formation on their surface immersed in simulated body fluid (SBF). AFM images showed that the growth of the hydroxyapatite layer occurs with a preferred orientation on the surface of forsterite biocomposites after immersion in SBF. Incorporation of nano forsterite in the polymer matrix (bis-GMA/TEGDMA) did show osteoblast adhesion and proliferation was improved on nano forsterite biocomposites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1290-1301, 2016.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.33396 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!