Background: Short-term intermittent hypoxia (IH) is common in patients with acute respiratory disorders. Although prolonged exposure to hypoxia induces atrophy and increased fatigability of skeletal muscle, the response to short-term IH is less well known. We hypothesized that the diaphragm and limb muscles would adapt differently to short-term IH given that hypoxia stimulates ventilation and triggers a superimposed exercise stimulus in the diaphragm.
Methods: We determined the structural, metabolic, and contractile properties of the mouse diaphragm after 4 days of IH (8 hours per day, 30 episodes per hour to a FiO2 nadir=6%), and compared responses in the diaphragm to a commonly studied reference limb muscle, the tibialis anterior. Outcome measures included muscle fiber size, assays of muscle proteolysis (calpain, ubiquitin-proteasome, and autophagy pathways), markers of oxidative stress and mitochondrial function, quantification of intramyocellular lipid and lipid metabolism genes, type I myosin heavy chain (MyHC) expression, and in vitro contractile properties.
Results: After 4 days of IH, the diaphragm alone demonstrated significant atrophy (30% decrease of myofiber size) together with increased LC3B-II protein (2.4-fold) and mRNA markers of the autophagy pathway (LC3B, Gabarapl1, Bnip3), whereas active calpain and E3 ubiquitin ligases (MuRF1, atrogin-1) were unaffected in both muscles. Succinate dehydrogenase activity was significantly reduced by IH in both muscles. However, only the diaphragm exhibited increased intramyocellular lipid droplets (2.5-fold) after IH, along with upregulation of genes linked to activated lipid metabolism. In addition, although the diaphragm showed evidence for acute fatigue immediately following IH, it underwent an adaptive fiber type switch toward slow type I MyHC-expressing fibers, associated with greater intrinsic endurance of the muscle during repetitive stimulation in vitro.
Conclusions: Short-term IH induces preferential atrophy in the mouse diaphragm together with increased autophagy and a rapid compensatory metabolic adaptation associated with enhanced fatigue resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4480857 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131068 | PLOS |
Pflugers Arch
January 2025
Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia.
Many synaptic vesicles undergo exocytosis in motor nerve terminals during neuromuscular communication. Endocytosis then recovers the synaptic vesicle pool and presynaptic membrane area. The kinetics of endocytosis may shape neuromuscular transmission, determining its long-term reliability.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
February 2025
Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.
Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.
Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.
Front Physiol
December 2024
Emergency Center, Hubei Clinical Research Center for Emergency and Resuscitaion, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
Background: Skeletal muscle atrophy significantly affects quality of life and has socio-economic and health implications. This study evaluates the effects of entacapone (ENT) on skeletal muscle atrophy linked with oxidative stress and proteolysis.
Methods: C2C12 cells were treated with dexamethasone (Dex) to simulate muscle atrophy.
Am J Physiol Renal Physiol
December 2024
Division of Nephrology, Department of Medicine, Stony Brook University, , Stony Brook, NY.
Glomerular endothelial cell (GEnC) injury is a common feature across the wide spectrum of glomerular diseases. We recently reported that the endothelial-specific knockout of increases the susceptibility to GEnC injury and subsequent development of subacute thrombotic microangiopathy (TMA). However, the mechanism(s) mediating GEnCs response to injury in TMA are poorly understood.
View Article and Find Full Text PDFHum Mol Genet
December 2024
Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032, United States.
Spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein. Even though SMN is ubiquitously expressed, the disease selectively affects motor neurons, leading to progressive muscle weakness. Even among motor neurons, certain motor units appear more clinically resistant to SMA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!