The thermal conductive properties, including the thermal diffusivity and resultant thermal conductivity, of nonwoven nanocellulose sheets were investigated by separately measuring the thermal diffusivity of the sheets in the in-plane and thickness directions with a periodic heating method. The cross-sectional area (or width) of the cellulose crystallites was the main determinant of the thermal conductive properties. Thus, the results strongly indicate that there is a crystallite size effect on phonon conduction within the nanocellulose sheets. The results also indicated that there is a large interfacial thermal resistance between the nanocellulose surfaces. The phonon propagation velocity (i.e., the sound velocity) within the nanocellulose sheets was estimated to be ∼800 m/s based on the relationship between the thermal diffusivities and crystallite widths. The resulting in-plane thermal conductivity of the tunicate nanocellulose sheet was calculated to be ∼2.5 W/mK, markedly higher than other plastic films available for flexible electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biomac.5b00617 | DOI Listing |
Int J Biol Macromol
December 2024
Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.
The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
Recent studies have focused on the development of bio-based products from sustainable resources using green extraction approaches, especially nanocellulose, an emerging nanoparticle with impressive properties and multiple applications. Despite the various sources of cellulose nanofibers, the search for alternative resources that replace wood, such as , a fast-growing Mediterranean plant, is crucial. It has not been previously investigated as a potential source of nanocellulose.
View Article and Find Full Text PDFAnn Burns Fire Disasters
September 2024
Department of Burn and Reconstructive Surgery, National Burn Care Centre, Pakistan Institute of Medical Sciences, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan.
Int J Biol Macromol
November 2024
LEPAMAP-PRODIS Research Group, University of Girona, C/ Maria Aurèlia Capmany, 61, 17003 Girona, Spain. Electronic address:
Anionic cellulose nanofibers (CNFs) were used to stabilize emulsions that combined water-soluble (and oil-soluble), strongly antioxidant extracts with a water-immiscible, notably antimicrobial essential oil. Specifically, the radical scavenging activity was primarily provided by aqueous extracts from olive fruit (Olea europaea L.), while the antimicrobial effects owed eminently to thyme oil (Thymus vulgaris L.
View Article and Find Full Text PDFMacromol Rapid Commun
August 2024
Department of Aeronautics, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
Cellulose nanopaper is a material structure that possesses high mechanical performance and is widely regarded as a promising 2D reinforcement for polymer matrix composites. This work explores the use of low grammage bacterial cellulose (BC) nanopaper as reinforcement for poly(acrylated urethane) interlayer adhesive to increase the impact performance of multilayer acrylic composites. The BC nanopaper is impregnated with an acrylated urethane resin and laminated between acrylic sheets to create BC/acrylic composites consisting of one, three, and five layers of BC nanopaper-reinforced poly(acrylated urethane) interlayer adhesive(s).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!