Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism.

Neuroimage Clin

Department of Psychology, Brain Development Imaging Laboratory, San Diego State University, San Diego, CA, USA ; Computational Science Research Center, San Diego State University, San Diego, CA, USA.

Published: April 2016

Despite consensus on the neurological nature of autism spectrum disorders (ASD), brain biomarkers remain unknown and diagnosis continues to be based on behavioral criteria. Growing evidence suggests that brain abnormalities in ASD occur at the level of interconnected networks; however, previous attempts using functional connectivity data for diagnostic classification have reached only moderate accuracy. We selected 252 low-motion resting-state functional MRI (rs-fMRI) scans from the Autism Brain Imaging Data Exchange (ABIDE) including typically developing (TD) and ASD participants (n = 126 each), matched for age, non-verbal IQ, and head motion. A matrix of functional connectivities between 220 functionally defined regions of interest was used for diagnostic classification, implementing several machine learning tools. While support vector machines in combination with particle swarm optimization and recursive feature elimination performed modestly (with accuracies for validation datasets <70%), diagnostic classification reached a high accuracy of 91% with random forest (RF), a nonparametric ensemble learning method. Among the 100 most informative features (connectivities), for which this peak accuracy was achieved, participation of somatosensory, default mode, visual, and subcortical regions stood out. Whereas some of these findings were expected, given previous findings of default mode abnormalities and atypical visual functioning in ASD, the prominent role of somatosensory regions was remarkable. The finding of peak accuracy for 100 interregional functional connectivities further suggests that brain biomarkers of ASD may be regionally complex and distributed, rather than localized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4473297PMC
http://dx.doi.org/10.1016/j.nicl.2015.04.002DOI Listing

Publication Analysis

Top Keywords

diagnostic classification
12
functional connectivity
8
classification intrinsic
4
functional
4
intrinsic functional
4
connectivity highlights
4
highlights somatosensory
4
somatosensory default
4
default mode
4
mode visual
4

Similar Publications

Presurgical anxiety and acute postsurgical pain predict worse chronic pain profiles after total knee/hip arthroplasty.

Arch Orthop Trauma Surg

January 2025

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.

Introduction: Total joint arthroplasties generally achieve good outcomes, but chronic pain and disability are a significant burden after these interventions. Acknowledging relevant risk factors can inform preventive strategies. This study aimed to identify chronic pain profiles 6 months after arthroplasty using the ICD-11 (International Classification of Diseases) classification and to find pre and postsurgical predictors of these profiles.

View Article and Find Full Text PDF

Long-term epidemiological trends in (primary) pediatric central nervous system tumors: a 25-year cohort analysis in Western Mexico.

Childs Nerv Syst

January 2025

Ph.D. Human Genetics Program, Molecular Biology and Genomics Department, Human Genetics Institute "Dr. Enrique Corona-Rivera", University Center of Health Sciences, University of Guadalajara, Guadalajara, Mexico.

Background: Central nervous system tumors (CNSTs) represent a significant oncological challenge in pediatric populations, particularly in developing regions where access to diagnostic and therapeutic resources is limited.

Methods: This research investigates the epidemiology, histological classifications, and survival outcomes of CNST in a cohort of pediatric patients aged 0 to 19 years within a 25-year retrospective study at the Civil Hospital of Guadalajara, Mexico, from 1999 to 2024.

Results: Data was analyzed from 273 patients who met inclusion criteria, revealing a higher incidence in males (51.

View Article and Find Full Text PDF

Are there atypical sites of IgG4 related disease in head and neck region? Personal experience and literature review.

Eur Arch Otorhinolaryngol

January 2025

Department of Otolaryngology and Head and Neck Surgery, IRCSS AOU San Martino, University of Genoa, Largo Rosanna Benzi 10, 16132, Genoa, Italy.

Purpose: Immunoglobulin G4-related disease (IgG4-RD) is a complex systemic fibroinflammatory condition with different clinical manifestations affecting multiple organ systems. Despite its rarity, the disease presents diagnostic and therapeutic challenges due to its mimicry of malignancies and other immune-mediated disorders. The 2019 American College of Rheumatology/European League Against Rheumatism Classification Criteria for IgG4-Related Disease is the current state of art to confirm the diagnosis of IgG4-RD even in the absence of histological analysis.

View Article and Find Full Text PDF

Purpose: The aim of this study was to identify prognostic factors influencing overall survival (OS) in patients with gastric cancer treated with adjuvant chemoradiotherapy (CRT) and to develop a predictive model.

Methods: We retrospectively evaluated 245 non-metastatic gastric cancer patients who received adjuvant CRT or radiotherapy from 2010 to 2020. Survival analyses were performed using the Kaplan-Meier method.

View Article and Find Full Text PDF

Objective: To identify clusters of women with similar trajectories of breast density change over four longitudinal assessments and to examine the association between these trajectories and the subsequent risk of breast cancer.

Design: Retrospective cohort study.

Setting: Data from the national breast cancer screening programme, which is embedded in the National Health Insurance Service database in Korea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!