A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Laser-induced capillary effect in thin layers of water-alcohol mixtures. | LitMetric

Laser-induced capillary effect in thin layers of water-alcohol mixtures.

Eur Phys J E Soft Matter

Institute of Physics and Technology, Tyumen State University, Semakova 10, 625003, Tyumen, Russia.

Published: June 2015

The effect of droplet formation in thin layers of water-alcohol mixtures upon laser heating was studied. The droplet growth in the laser beam is governed by the surface tension gradient, which induces solutocapillary flows from the periphery to the center of the heated area. This gradient arises due to the local increase in surface tension caused by the evaporation of alcohol from the heated area of the layer. The experimental results have shown that the increase in the initial concentration of water in the mixture gives rise to the increase in droplet size. However, the increase in the power of laser irradiation leads to a decrease in the droplet growth rate. A simplified one-dimensional model of droplet growth is developed. The model involves the dependence of surface tension on both the temperature and concentration of components in the mixture, as well as the evaporation and condensation of alcohol. The experimental results are compared with those obtained using numerical simulations. A reasonable agreement between experimental and numerical results was shown.

Download full-text PDF

Source
http://dx.doi.org/10.1140/epje/i2015-15060-1DOI Listing

Publication Analysis

Top Keywords

droplet growth
12
surface tension
12
thin layers
8
layers water-alcohol
8
water-alcohol mixtures
8
heated area
8
droplet
5
laser-induced capillary
4
capillary thin
4
mixtures droplet
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!