Rationale: Epigenetic mechanisms are crucial for cell identity and transcriptional control. The heart consists of different cell types, including cardiac myocytes, endothelial cells, fibroblasts, and others. Therefore, cell type-specific analysis is needed to gain mechanistic insight into the regulation of gene expression in cardiac myocytes. Although cytosolic mRNA represents steady-state levels, nuclear mRNA more closely reflects transcriptional activity. To unravel epigenetic mechanisms of transcriptional control, cell type-specific analysis of nuclear mRNA and epigenetic modifications is crucial.
Objective: The aim was to purify cardiac myocyte nuclei from hearts of different species by magnetic- or fluorescent-assisted sorting and to determine the nuclear and cellular RNA expression profiles and epigenetic marks in a cardiac myocyte-specific manner.
Methods And Results: Frozen cardiac tissue samples were used to isolate cardiac myocyte nuclei. High sorting purity was confirmed for cardiac myocyte nuclei isolated from mice, rats, and humans. Deep sequencing of nuclear RNA revealed a major fraction of nascent, unspliced RNA in contrast to results obtained from purified cardiac myocytes. Cardiac myocyte nuclear and cellular RNA expression profiles showed differences, especially for metabolic genes. Genome-wide maps of the transcriptional elongation mark H3K36me3 were generated by chromatin-immunoprecipitation. Transcriptome and epigenetic data confirmed the high degree of cardiac myocyte-specificity of our protocol. An integrative analysis of nuclear mRNA and histone mark occurrence indicated a major impact of the chromatin state on transcriptional activity in cardiac myocytes.
Conclusions: This study establishes cardiac myocyte-specific sorting of nuclei as a universal method to investigate epigenetic and transcriptional processes in cardiac myocytes of different origins. These data sets provide novel insight into cardiac myocyte transcription.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCRESAHA.115.306337 | DOI Listing |
Drug Des Devel Ther
January 2025
School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, People's Republic of China.
Background: Doxorubicin (DOX) is a chemotherapeutic agent widely used for cancer treatment and has non-negligible cardiotoxicity. Some previous studies have reported that cannabidiol (CBD) has cardioprotective effects. In this study, we evaluated the protective effects of CBD against DOX-induced cardiomyocyte injury, and explored the downstream molecular mechanism.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.
Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.
View Article and Find Full Text PDFCardiovasc Res
January 2025
Department of Pathophysiology, Shenzhen University Medical School, Shenzhen 518060, China.
Aims: Decrease in repolarizing K+ currents, particularly the fast component of transient outward K+ current (Ito,f), prolongs action potential duration (APD) and predisposes the heart to ventricular arrhythmia during cardiac hypertrophy. Histone deacetylases (HDACs) have been suggested to participate in the development of cardiac hypertrophy, and class I HDAC inhibition has been found to attenuate pathological remodeling. This study investigated the potential therapeutic effects of HDAC2 on ventricular arrhythmia in pressure overload-induced cardiac hypertrophy.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Department of Physiology and Membrane Biology, University of California Davis, Davis, CA 95616.
The L-type Ca channel (Ca1.2) is essential for cardiac excitation-contraction coupling. To contribute to the inward Ca flux that drives Ca-induced-Ca-release, Ca1.
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!