Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide that suppresses reproduction in birds and mammals by inhibiting GnRH and gonadotropin secretion. GnIH orthologs with a C-terminal LPXRFamide (LPXRFa) motif have been identified in teleost fish. Although recent work also suggests its role in fish reproduction, studies are scarce and controversial, and have mainly focused on cyprinids. In this work we cloned a full-length cDNA encoding an LPXRFa precursor in the European sea bass, Dicentrarchus labrax. In contrast to other teleosts, the sea bass LPXRFa precursor contains only two putative RFamide peptides, termed sbLPXRFa1 and sbLPXRFa2. sblpxrfa transcripts were expressed predominantly in the olfactory bulbs/telencephalon, diencephalon, midbrain tegmentum, retina, and gonads. We also developed a specific antiserum against sbLPXRFa2, which revealed sbLPXRFa-immunoreactive (ir) perikarya in the olfactory bulbs-terminal nerve, ventral telencephalon, caudal preoptic area, dorsal mesencephalic tegmentum, and rostral rhombencephalon. These sbLPXRFa-ir cells profusely innervated the preoptic area, hypothalamus, optic tectum, semicircular torus, and caudal midbrain tegmentum, but conspicuous projections also reached the olfactory bulbs, ventral/dorsal telencephalon, habenula, ventral thalamus, pretectum, rostral midbrain tegmentum, posterior tuberculum, reticular formation, and viscerosensory lobe. The retina, pineal, vascular sac, and pituitary were also targets of sbLPXRFa-ir cells. In the pituitary, this innervation was observed close to follicle-stimulating hormone (FSH), luteinizing hormone (LH) and growth hormone (GH) cells. Tract-tracing retrograde labeling suggests that telencephalic and preoptic sbLPXRFa cells might represent the source of pituitary innervation. The immunohistochemical distribution of sbLPXRFa cells and fibers suggest that LPXRFa peptides might be involved in some functions as well as reproduction, such as feeding, growth, and behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cne.23833 | DOI Listing |
Alzheimers Dement
December 2024
Institute for Biomedical Informatics, Philadelphia, PA, USA.
Background: NIAGADS is a national genomics data repository that facilitates access of genotypic and sequencing data to qualified investigators for the study of the genetics of Alzheimer's disease (AD) and related neurological diseases. Collaborations with large consortia and centers such as the Alzheimer's Disease Genetics Consortium (ADGC), Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium, the Alzheimer's Disease Sequencing Project (ADSP), and the Genome Center for Alzheimer's Disease (GCAD) allow NIAGADS to lead the effort in managing large AD datasets that can be easily accessed and fully utilized by the research community.
Method: NIAGADS is supported by the National Institute on Aging (NIA) under a cooperative agreement.
Proc Natl Acad Sci U S A
January 2025
Division of Marine Science and Conservation, Nicholas School of the Environment, Duke University Marine Lab, Beaufort, NC 28516.
Ecosystem restoration has historically been viewed as an ecological endeavor, but restoration possesses significant, yet largely untapped, potential as a catalyst for personal and social transformation. We highlight the opportunity for restoration to enhance community resilience by increasing agency and collective action and countering the pervasive perception that we are powerless witnesses to environmental decline. In this perspective, we take a "bright spots" approach and highlight successful examples of ecosystem restoration that have helped to nurture a sense of place, foster optimism, and cultivate stronger and more diverse social networks.
View Article and Find Full Text PDFFish Shellfish Immunol
December 2024
College of Fisheries, Henan Normal University, Xinxiang, 453007, China; Observation and Research Station on Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, China; Department of Biological Sciences, Clemson University, Clemson, SC, 29634, USA. Electronic address:
Largemouth bass (Micropterus salmoides) has become one of the most important freshwater economic fish farmed almost all over China in recent years. At the same time, the increasing outbreaks of diseases in its aquaculture process have caused substantial economic losses to this industry. However, at present, the genetic basis of disease resistance, including resistance against Aeromonas veronii infection, in largemouth bass is very limited.
View Article and Find Full Text PDFFood Chem
December 2024
Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of The People's Republic of China, National R&D Center for Aquatic Product Processing, South China Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, China. Electronic address:
Fermented sea bass, recognized for its firmness and chewy texture, provides a distinct sensory experience.This study investigated the texture and microstructural properties of fermented sea bass during fermentation. Proteomics analysis identified the key proteins involved in firmness development, revealing the molecular mechanisms behind these changes.
View Article and Find Full Text PDFSci Rep
December 2024
Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada.
The potential risk posed by infectious agents (IAs) associated with netpen aquaculture to wild fishes is determined based on the "release" of IAs from netpens into the environment, the "exposure" of the wild fish to those released agents, and the "consequence" for wild fish experiencing infection by those agents. Information available to characterize these three factors is often lacking, and the occurrence of transmission from aquaculture to wild fish as well as potential consequences of such transmission are difficult to observe. In this study, we utilized environmental DNA (eDNA) to characterize the release of dozens of IAs from, and exposure of Pacific salmon to, Atlantic salmon aquaculture.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!