Novel chemiluminescent (CL) imaging microtiter plates with high-throughput, low-cost, and simple operation for detection of four biomarkers related to Down's syndrome screening were developed and evaluated. To enhance the sensitivity of CL immunosensing, soybean peroxidase (SBP) was used instead of horseradish peroxide (HRP) as a label enzyme. The microtiter plates were fabricated by simultaneously immobilizing four capture monoclonal antibodies, anti-inhibin-A, anti-unconjugated oestriol (anti-uE3), anti-alpha-fetoprotein (anti-AFP), and beta anti-HCG (anti-β-HCG), on nitrocellulose (NC) membrane to form immunosensing microtiter wells. Under a sandwiched immunoassay, the CL signals on each sensing site of the microtiter plates were collected by a charge-coupled device (CCD), presenting an array-based chemiluminescence imaging method for detection of four target antigens in a well at the same time. The linear response to the analyte concentration ranged from 0.1 to 40 ng/mL for inhibin-A, 0.075 to 40 ng/mL for uE3, 0.2 to 400 ng/mL for AFP, and 0.4 to 220 ng/mL for β-HCG. The proposed microtiter plates possessed high-throughput, good stability, and acceptable accuracy for detection of four antigens in clinical serum samples and demonstrated potential for practical applicability of the proposed method to Down's syndrome screening. Graphical Abstract Schematic evaluation of the microtiter plater for simultaneous detection of the four biomarkers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-015-8788-x | DOI Listing |
BMC Biotechnol
January 2025
Aachener Verfahrenstechnik - Biochemical Engineering, RWTH Aachen University, Forckenbeckstr. 51, 52074, Aachen, Germany.
Background: In the fermentation industry, the demand to replace expensive complex media components is increasing for alternative nutrient sources derived from waste or side streams, such as corn steep liquor (CSL). However, the use of CSL is associated with common problems of side products, such as batch-to-batch variations and compositional inconsistencies. In this study, to detect batch-to-batch variations in CSL for Ogataea polymorpha cultivations, a "fingerprinting" system was developed by employing the Respiration Activity Monitoring System designed for shake flasks (RAMOS) and 96-well microtiter plates (µTOM).
View Article and Find Full Text PDF3 Biotech
February 2025
Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai, Tamil Nadu 600034 India.
Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Microbiology and Immunology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
Background: The potent antioxidant lycopene has attracted a large amount of research attention given its potential health benefits. We aimed to assess the antimicrobial, anti-inflammatory, and antioxidant properties of lycopene (Lyc), selenium nanoparticles (Se-NPs), and lycopene selenium nanoparticles (Lyc-Se-NPs).
Methods: FTIR, polydispersity index, and zeta potential evaluations provided a complete characterization of the synthesized Lyc-Se-NPs.
Int J Microbiol
December 2024
Department of Microbiology, Tribhuvan University Teaching Hospital, Kathmandu, Nepal.
BMC Biotechnol
January 2025
National Food Institute, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!