Purpose: Severe (Radiation Therapy Oncology Group [RTOG] grade 3 or greater) esophagitis generally occurs in 15% to 25% of non-small cell lung cancer (NSCLC) patients undergoing concurrent chemotherapy and radiation therapy (CCRT), which may result in treatment breaks that compromise local tumor control and pose a barrier to dose escalation. Here, we report a novel contralateral esophagus-sparing technique (CEST) that uses intensity modulated radiation therapy (IMRT) to reduce the incidence of severe esophagitis.

Methods And Materials: We reviewed consecutive patients with thoracic malignancies undergoing curative CCRT in whom CEST was used. The esophageal wall contralateral (CE) to the tumor was contoured as an avoidance structure, and IMRT was used to guide a rapid dose falloff gradient beyond the target volume in close proximity to the esophagus. Esophagitis was recorded based on the RTOG acute toxicity grading system.

Results: We identified 20 consecutive patients treated with CCRT of at least 63 Gy in whom there was gross tumor within 1 cm of the esophagus. The median radiation dose was 70.2 Gy (range, 63-72.15 Gy). In all patients, ≥99% of the planning and internal target volumes was covered by ≥90% and 100% of prescription dose, respectively. Strikingly, no patient experienced grade ≥3 esophagitis (95% confidence limits, 0%-16%) despite the high total doses delivered. The median maximum dose, V45, and V55 of the CE were 60.7 Gy, 2.1 cc, and 0.4 cc, respectively, indicating effective esophagus cross-section sparing by CEST.

Conclusion: We report a simple yet effective method to avoid exposing the entire esophagus cross-section to high doses. By using proposed CE dose constraints of V45 <2.5 cc and V55 <0.5 cc, CEST may improve the esophagus toxicity profile in thoracic cancer patients receiving CCRT even at doses above the standard 60- to 63-Gy levels. Prospective testing of CEST is warranted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2015.03.018DOI Listing

Publication Analysis

Top Keywords

radiation therapy
12
contralateral esophagus-sparing
8
esophagus-sparing technique
8
patients thoracic
8
thoracic malignancies
8
consecutive patients
8
esophagus cross-section
8
dose
6
radiation
5
patients
5

Similar Publications

Combining radiotherapy with targeted therapy benefits patients with advanced epidermal growth factor receptor-mutated non-small cell lung cancer (EGFRm NSCLC). However, the optimal strategy to combine EGFR tyrosine kinase inhibitors (TKIs) with radiotherapy for maximum efficacy and minimal toxicity is still uncertain. Notably, EVs, which serve as communication mediators among tumor cells, play a crucial role in the anti-tumor immune response.

View Article and Find Full Text PDF

(1) Background: Ultra-high dose rate (UHDR) radiation therapy needs a reliable dosimetry solution and scintillation detectors are promising candidates. In this study, we characterized an inorganic powder-based scintillation detector under a 9 MeV UHDR electron beam. (2) Methods: A mixture of ZnS:Ag powder and optic glue was coupled to an 8 m Eska GH-4001-P polymethyl methacrylate (PMMA) optical fiber.

View Article and Find Full Text PDF

Innovative Nanomedicine Delivery: Targeting Tumor Microenvironment to Defeat Drug Resistance.

Pharmaceutics

December 2024

Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.

Nanodrug delivery systems have revolutionized tumor therapy like never before. By overcoming the complexity of the tumor microenvironment (TME) and bypassing drug resistance mechanisms, nanotechnology has shown great potential to improve drug efficacy and reduce toxic side effects. This review examines the impact of the TME on drug resistance and recent advances in nanomedicine delivery systems to overcome this challenge.

View Article and Find Full Text PDF

Mesoporous Polydopamine Nano-Bowls Demonstrate a High Entrapment Efficiency and pH-Responsive Release of Paclitaxel for Suppressing A549 Lung Cancer Cell Proliferation In Vitro.

Pharmaceutics

December 2024

Wits Advanced Drug Delivery Platform, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa.

The effectiveness of paclitaxel (PTX) in treating non-small-cell lung carcinoma (NSCLC) is restricted by its poor pharmacokinetic profile and side effects. This limitation stems from the lack of a suitable delivery vector to efficiently target cancer cells. Therefore, there is a critical need to develop an efficient carrier for the optimised delivery of PTX in NSCLC therapy.

View Article and Find Full Text PDF

Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives.

Pharmaceutics

November 2024

Department of Cell Biology and Molecular Genetics, Sri Devraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563103, India.

Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!