Although the effects of deleterious alleles often are predicted to be greater in stressful environments, there is no theoretical basis for this prediction and the empirical evidence is mixed. Here we characterized the effects of three types of abiotic stress (thermal, oxidative and hyperosmotic) on two sets of nematode (Caenorhabditis elegans) mutation accumulation (MA) lines that differ by threefold in fitness. We compared the survival and egg-to-adult viability between environments (benign and stressful) and between fitness categories (high-fitness MA, low-fitness MA). If the environment and mutation load have synergistic effects on trait means, then the difference between the high and low-fitness MA lines should be larger in stressful environments. Although the stress treatments consistently decreased survival and/or viability, we did not detect significant interactions between fitness categories and environment types. In contrast, we did find consistent evidence for synergistic effects on (micro)environmental variation. The lack of signal in trait means likely reflects the very low starting fitness of some low-fitness MA lines, the potential for cross-stress responses and the context dependence of mutational effects. In addition, the large increases in the environmental variance in the stressful environments may have masked small changes in trait means. These results do not provide evidence for synergism between mutation and stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4806897 | PMC |
http://dx.doi.org/10.1038/hdy.2015.51 | DOI Listing |
Environ Sci Technol
January 2025
Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000 Sichuan Province, China.
This study delves into the adverse effects of AVM, emphasizing oxidative stress induction in the Chinese mitten crab, , and the role of the MAPK-CncC signaling pathway in mediating the antioxidative response. Our findings reveal a dose-dependent impairment in growth performance, alongside occurrence of oxidative stress. The activity of CAT and superoxide dismutase increased significantly in all treatments (0.
View Article and Find Full Text PDFPLOS Glob Public Health
January 2025
Global Health Program, Smithsonian Conservation Biology Institute, Washington, DC, United States of America.
Climate change is having unprecedented impacts on human health, including increasing infectious disease risk. Despite this, health systems across the world are currently not prepared for novel disease scenarios anticipated with climate change. While the need for health systems to develop climate change adaptation strategies has been stressed in the past, there is no clear consensus on how this can be achieved, especially in rural areas in low- and middle-income countries that experience high disease burdens and climate change impacts simultaneously.
View Article and Find Full Text PDFPLoS Biol
January 2025
Institute for Biological Physics, University of Cologne, Cologne, Germany.
Type 4 pili (T4P) are multifunctional filaments involved in adhesion, surface motility, biofilm formation, and horizontal gene transfer. These extracellular polymers are surface-exposed and, therefore, act as antigens. The human pathogen Neisseria gonorrhoeae uses pilin antigenic variation to escape immune surveillance, yet it is unclear how antigenic variation impacts most other functions of T4P.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Beijing Life Science Academy, Beijing 102206, China.
Detection of low-abundance mutations for the early discovery of fungicide-resistant fungal pathogens is highly demanded, but remains challenging. Herein, we developed a dual-recognition strategy, termed PARPA, involving s Argonaute (pfAgo)-mediated elimination of wild-type fungal genes and CRISPR/Cas12a-based amplicon recognition. This assay can detect fungicide-resistant at relative abundances as low as 0.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
October 2024
Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
Microalgae offer a promising alternative for sustainable nutritional supplements and functional food ingredients and hold potential to meet the growing demand for nutritious and eco-friendly food alternatives. With the escalating impacts of global climate change and increasing human activities, microalgal production must be enhanced by reducing freshwater and land use and minimizing carbon emissions. The advent of 3D printing offers novel opportunities for optimizing microalgae production, though it faces challenges such as high production costs and scalability concerns.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!