Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.

Acc Chem Res

Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States.

Published: July 2015

Studying catalytic processes at the molecular level is extremely challenging, due to the structural and chemical complexity of the materials used as catalysts and the presence of reactants and products in the reactor's environment. The most common materials used on catalysts are transition metals and their oxides. The importance of multifunctional active sites at metal/oxide interfaces has been long recognized, but a molecular picture of them based on experimental observations is only recently emerging. The initial approach to interrogate the surface chemistry of catalysts at the molecular level consisted of studying metal single crystals as models for reactive metal centers, moving later to single crystal or well-defined thin film oxides. The natural next iteration consisted in the deposition of metal nanoparticles on well-defined oxide substrates. Metal nanoparticles contain undercoordinated sites, which are more reactive. It is also possible to create architectures where oxide nanoparticles are deposited on top of metal single crystals, denominated inverse catalysts, leading in this case to a high concentration of reactive cationic sites in direct contact with the underlying fully coordinated metal atoms. Using a second oxide as a support (host), a multifunctional configuration can be built in which both metal and oxide nanoparticles are located in close proximity. Our recent studies on copper-based catalysts are presented here as an example of the application of these complementary model systems, starting from the creation of undercoordinated sites on Cu(111) and Cu2O(111) surfaces, continuing with the formation of mixed-metal copper oxides, the synthesis of ceria nanoparticles on Cu(111) and the codeposition of Cu and ceria nanoparticles on TiO2(110). Catalysts have traditionally been characterized before or after reactions and analyzed based on static representations of surface structures. It is shown here how dynamic changes on a catalyst's chemical state and morphology can be followed during a reaction by a combination of in situ microscopy and spectroscopy. In addition to determining the active phase of a catalyst by in situ methods, the presence of weakly adsorbed surface species or intermediates generated only in the presence of reactants can be detected, allowing in turn the comparison of experimental results with first principle modeling of specific reaction mechanisms. Three reactions are used to exemplify the approach: CO oxidation (CO + 1/2O2 → CO2), water gas shift reaction (WGSR) (CO + H2O → CO2 + H2), and methanol synthesis (CO2 + 3H2 → CH3OH + H2O). During CO oxidation, the full conversion of Cu(0) to Cu(2+) deactivates an initially outstanding catalyst. This can be remedied by the formation of a TiCuOx mixed-oxide that protects the presence of active partially oxidized Cu(+) cations. It is also shown that for the WGSR a switch occurs in the reaction mechanism, going from a redox process on Cu(111) to a more efficient associative pathway at the interface of ceria nanoparticles deposited on Cu(111). Similarly, the activation of CO2 at the ceria/Cu(111) interface allows its facile hydrogenation to methanol. Our combined studies emphasize the need of searching for optimal metal/oxide interfaces, where multifunctional sites can lead to new efficient catalytic reaction pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.accounts.5b00200DOI Listing

Publication Analysis

Top Keywords

ceria nanoparticles
12
copper-based catalysts
8
model systems
8
molecular level
8
materials catalysts
8
presence reactants
8
metal/oxide interfaces
8
metal single
8
single crystals
8
metal nanoparticles
8

Similar Publications

Article Synopsis
  • Delayed healing in diabetic wounds is primarily due to a dysfunctional microenvironment caused by high blood sugar and ongoing inflammation.
  • Topical microenvironment modulation, particularly using microneedles, offers a promising solution to enhance healing by delivering therapeutic agents directly to the wound's surface.
  • A hybrid microneedle has been developed incorporating carvacrol, cyclodextrin, mesoporous ceria nanoparticles, and hyaluronate, which improves healing by providing antibacterial, antioxidant, and anti-inflammatory effects to accelerate tissue reconstruction processes like cell proliferation and angiogenesis.
View Article and Find Full Text PDF

Excessive reactive oxygen species (ROS) generated by ultraviolet (UV) irradiation significantly contribute to photoaging by increasing the level of matrix metalloproteinases (MMPs), accelerating collagen degradation. Commercial dermal fillers offer temporary wrinkle reduction via volume enhancement. In this study, we propose tilapia-derived collagen hydrogels embedded with ceria nanoparticles (Ce@Col gels) as long-lasting dermal fillers for UVB-induced photoaging.

View Article and Find Full Text PDF

Dynamic phase transitions dictate the size effect and activity of supported gold catalysts.

Sci Adv

December 2024

Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, China.

The landmark discovery of gold catalysts has aroused substantial interest in heterogeneous catalysis, yet the catalytic mechanism remains elusive. For carbon monoxide oxidation on gold nanoparticles (NPs) supported on ceria surfaces, it is widely believed that carbon monoxide adsorbs on the gold particles, while the reaction occurs at the gold/ceria interface. Here, we have investigated the dynamic changes of supported gold NPs with various sizes in a carbon monoxide oxidation atmosphere using deep potential molecular dynamics simulations.

View Article and Find Full Text PDF

The water-gas shift (WGS) reaction is one of the most significant reactions in hydrogen technology since it can be used directly to produce hydrogen from the reaction of CO and water; it is also a side reaction taking place in the hydrocarbon reforming processes, determining their selectivity towards H production. The development of highly active WGS catalysts, especially at temperatures below ~450 °C, where the reaction is thermodynamically favored but kinetically limited, remains a challenge. From a fundamental point of view, the reaction mechanism is still unclear.

View Article and Find Full Text PDF

Cerium dioxide sols stabilised with L-malic acid were shown to exhibit significant antioxidant activity towards alkyl peroxyl radicals in the range of ligand:CeO molar ratios of 0.2-1 (0.2:1, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!