Extraction of intercalated O2 from aligned carbon nanotubes: the breaking of intertube paths and exponential changes in resistance.

Chemphyschem

Department of Materials Science and Engineering, National TsingHua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013 (Republic of China).

Published: August 2015

In carbon nanotube films, the alignment of carbon nanotubes creates Lennard-Jones potentials at intertube junctions and trapped O2 appears to oscillate at elevated temperatures. Electrical measurements reveal a low hopping barrier along the transverse direction and an underlying mechanism that involves intercalated molecules acting as charge carriers between tubes. Ab initio calculations support dynamic intercalation and charge transfer through O2 bouncing between tubes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201500325DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
extraction intercalated
4
intercalated aligned
4
aligned carbon
4
nanotubes breaking
4
breaking intertube
4
intertube paths
4
paths exponential
4
exponential changes
4
changes resistance
4

Similar Publications

Most traditional optical biosensors operate through molecular recognition, where ligand binding causes conformational changes that lead to optical perturbations in the emitting motif. Optical sensors developed from single-stranded DNA-functionalized single-walled carbon nanotubes (ssDNA-SWCNTs) have started to make useful contributions to biological research. However, the mechanisms underlying their function have remained poorly understood.

View Article and Find Full Text PDF

The conventional carbonization process for synthesizing hard carbons (HCs) requires high-temperature furnace operations exceeding 1000 °C, leading to excessive energy consumption and lengthy processing times, which necessitates the exploration of more efficient synthesis methods. This study demonstrates the rapid preparation of HC anodes using intense pulsed light (IPL)-assisted photothermal carbonization without the prolonged and complex operations typical of traditional carbonization methods. A composite film of microcrystalline cellulose (MCC) and single-walled carbon nanotubes (SWCNTs) is carbonized at high temperatures in less than 1 min.

View Article and Find Full Text PDF

Controlling charge transport at the interfaces of nanostructures is crucial for their successful use in optoelectronic and solar energy applications. Mixed-dimensional heterostructures based on single-walled carbon nanotubes (SWCNTs) and transition metal dichalcogenides (TMDCs) have demonstrated exceptionally long-lived charge-separated states. However, the factors that control the charge transport at these interfaces remain unclear.

View Article and Find Full Text PDF

Establishing optimized metal-support interaction (MSI) between active sites and the substrate is essential for modulating the adsorption properties of key reaction intermediates during catalysis, thereby enhancing the catalytic performance. In this study, catalyst composites with varying degrees of MSI are constructed using ruthenium (Ru) and different carbon nanotubes, and their performance for alkaline hydrogen evolution reaction (HER) is systematically investigated. Detailed kinetic assessments reveal that catalysts with a strong MSI exhibit superior HER activity.

View Article and Find Full Text PDF

Currently, the development of suitable transition metal chalcogenides (TMDs) for aqueous zinc ion batteries (AZIBs) is plagued by the terrible conductivity and electrochemical properties. Herein, a one-step ball milling method is applied to enhance the conductivity of commercial MnTe cathode by constructing three dimensional (3D) carbon nanotubes (CNTs) interweaved MnTe nanoparticles (abbreviated as MnTe@CNTs), which can achieve ultrafast ion conduction. The stable electrochemistry properties benefit from the synergistic effects between layered MnTe and 3D CNTs, which can improve the electrons/ions diffusion kinetics as cycling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!