Unlabelled: Biomaterials upon implantation are immediately covered by blood proteins which direct the subsequent blood activation. These early events determine the following cascade of biological reactions and consequently the long-term success of implants. The ability to modulate surface properties of biomaterials is therefore of considerable clinical significance. Goal of this study was an in-depth understanding of the biological response to cobalt chromium stent alloys with engineered surface oxide layers, which showed altered body reactions in vivo. We analyzed in vitro the biological events following initial blood contact on engineered cobalt chromium surfaces featuring said oxide layers. Surface-specific blood reactions were confirmed by scanning electron microscopy and the adsorbed protein layers were characterized by mass spectrometry. This powerful proteomics tool allowed the identification and quantification of over hundred surface-adhering proteins. Proteins associated with the coagulation cascade, platelet adhesion and neutrophil function correlated with the various blood surface activations observed. Furthermore, results of pre-coated surfaces with defined fibrinogen-albumin mixtures suggest that neutrophil adhesion was controlled by fibrinogen orientation and conformation rather than quantity. This study highlights the importance of controlling the biological response in the complex protein-implant surface interactions and the potential of the surface modifications to improve the clinical performance of medical implants.
Statement Of Significance: The blood contact activation of CoCr alloys is determined by their surface oxide layer properties. Modifications of the oxide layer affected the total amount of adsorbed proteins and the composition of the adsorbed protein layer. Additionally fibrinogen coatings mediated the surface-dependent neutrophil adhesion in a concentration-independent manner, indicating the influence of conformation and/or orientation of the adsorbed protein. Despite the complexity of protein-implant interactions, this study highlights the importance of understanding and controlling mechanisms of protein adhesion in order to improve and steer the performance of medical implants. It shows that modification of the surface oxide layer is a very attractive strategy to directly functionalize metallic implant surfaces and optimize their blood interaction for the desired orthopedic or cardiovascular applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2015.06.020 | DOI Listing |
Curr Microbiol
January 2025
Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Organization (AREEO), Karaj, Iran.
Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Physiology, Faculty of Medicine, Semmelweis University, 37-47 Tűzoltó Street, 1094 Budapest, Hungary.
The octapeptide angiotensin II (Ang II) is a circulating hormone as well as a locally formed agonist synthesized by the angiotensin-converting enzyme (ACE) of endothelial cells. It forms a powerful mechanism to control the amount and pressure of body fluids. All main effects are directed to save body salt and water and ensure blood pressure under basic conditions and in emergencies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Hemostasis and Hemostatic Disorders, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland.
COVID-19 and post-COVID (long COVID) are associated with thromboembolic complications; however, it is still not clear whether platelets play a leading role in this phenomenon. The platelet hyperreactivity could result from the direct interaction between platelets and viral elements or the response to inflammatory and prothrombotic factors released from blood and vessel cells following infection. The existing literature does not provide clear-cut answers, as the results determining platelet status vary according to methodology.
View Article and Find Full Text PDFZ Gastroenterol
January 2025
Institute of Molecular Immunology, School of Life Science, Technical University of Munich, Munich, Germany.
The liver is an organ bearing important metabolic and immune functions. Hepatocytes are the main metabolically active cells of the liver and are the target of infection by hepatotropic viruses. Virus-specific CD8 T cells are essential for the control of hepatocyte infection with hepatotropic viruses but may be subject to local regulation of their effector function.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Department of Chemistry, Simon Fraser University Burnaby British Columbia Canada. Electronic address:
Prostaglandin E receptor type 4 (EP4) agonists have been shown to be effective in treating experimental ulcerative colitis (UC) in animals and in human clinical trials, but their development has been impeded by unacceptable systemic side effects. In this study, a series of methylene phosphate prodrugs of a highly potent and selective prostaglandin EP4 receptor agonist were designed to target and remain localized in the gastrointestinal (GI) tract after either oral or rectal instillation. The prodrugs were designed to be converted to liberate active EP4 agonist by intestinal alkaline phosphate (IAP), a ubiquitous enzyme found at the luminal of the intestinal wall thus exposing the colon epithelial barrier while reducing systemic exposure to the active agonist.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!