A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Upper Body Aerobic Exercise as a Possible Predictor of Lower Body Performance. | LitMetric

Background: Aerobic exercise capacity provides information regarding cardiorespiratory health and physical capacity. However, in many populations the ability to measure whole-body or leg aerobic exercise capacity is limited due to physical disability or lack of appropriate equipment. Clinically there is a need to evaluate aerobic capacity in individuals who cannot use their legs for locomotion. In astronauts the habitable space for exercise testing in the next generation of space exploration systems may be restricted and may not support the traditional lower body testing. Therefore, the purpose was to determine if upper body physical performance could estimate lower body aerobic capacity.

Methods: Maximal O₂uptake (Vo(2max)), gas exchange threshold (GET), and the highest sustainable rate of aerobic metabolism [arm cranking critical power ((A)CP) and lower body critical speed ((L)CS)] were determined in 55 conditioned men and women during arm-cranking and treadmill running.

Results: Vo(2max) and GET (48.6 ± 7.6 and 29.0 ± 4.8 ml · kg⁻¹ · min⁻¹, respectively) were significantly lower during arm-cranking exercise compared to running (27.1 ± 7.6 and 13.5 ± 2.6 ml · kg⁻¹ · min⁻¹, respectively). The Vo₂at ACP was significantly lower than the Vo₂at the (L)CS (18.4 ± 5.01 vs. 39.5 ± 8.1 ml · kg⁻¹ · min⁻¹, respectively). There was a significant correlation between arm-cranking and lower body Vo2max, GET, and the Vo₂at (L)CS and ACP. Backward stepwise regression analyses revealed that arm-cranking physical fitness could explain 67%, 40%, and 49% of the variance in lower body Vo(2max), GET, and (L)CS, respectively.

Discussion: Results suggest arm-cranking exercise can be used to obtain an approximation of lower body aerobic capacity.

Download full-text PDF

Source
http://dx.doi.org/10.3357/AMHP.4181.2015DOI Listing

Publication Analysis

Top Keywords

lower body
28
body aerobic
12
aerobic exercise
12
kg⁻¹ min⁻¹
12
lower
9
upper body
8
body
8
exercise capacity
8
aerobic capacity
8
acp lower
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!