Purpose: Amifampridine (3,4-diaminopyridine) has been approved in the European Union for the treatment of Lambert-Eaton myasthenic syndrome. Amifampridine has a narrow therapeutic index, and supratherapeutic exposure has been associated with dose-dependent adverse events, including an increased risk for seizure. This study assessed the effect of food on the relative bioavailability of amifampridine in healthy subjects and informed on conditions that can alter exposure.
Methods: This randomized, open-labeled, 2-treatment, 2-period crossover study enrolled 47 healthy male and female subjects. Subjects were randomly assigned to receive 2 single oral doses of amifampridine phosphate salt (20 mg base equivalents per dose) under fed or fasted conditions separated by a washout period. Blood and urine samples for pharmacokinetic analyses were taken before and after dosing. Plasma concentrations of amifampridine and an inactive 3-N-acetyl metabolite were determined. The relative bioavailability values of amifampridine and metabolite were assessed based on the plasma PK parameters AUC0-∞, AUC0-t, and Cmax in the fed and fasted states using noncompartmental pharmacokinetic analysis. Parent drug and metabolite excretion were calculated from urinary concentrations. A food effect on bioavailability would be established if the 90% CI of the ratio of population geometric mean value of AUC0-∞, AUC0-t, or Cmax between fed and fasted administration was not within the bioequivalence range of 80% to 125%. Tolerability was assessed based on adverse-event reporting, clinical laboratory assessments, physical examination including vital sign measurements, 12-lead ECG, and concurrent medication use.
Findings: Food slowed and somewhat decreased the absorption of amifampridine. There was a decrease in exposure (Cmax, 44%; AUC, 20%) after oral administration of amifampridine phosphate salt in the presence of food, and mean Tmax was 2-fold longer in the fed state. The extent of exposure and plasma elimination half-life of the major metabolite was greater than those of amifampridine in the fed and fasted conditions. Mean AUCs in the fed and fasted states were slightly greater in women than men, with no difference in mean Cmax. Orally administered amifampridine was renally eliminated (>93%) as the parent compound and metabolite within 24 hours. Single oral doses of 20 mg of amifampridine phosphate salt were considered well tolerated in both the fed and fasted conditions. High intersubject variability (%CVs, >30%) in amifampridine pharmacokinetic parameter values was observed.
Implications: At the intended dose under fasting conditions, amifampridine exposure may be increased. European Union Drug Regulating Authorities Clinical Trials identifier: 2011-000596-13.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.clinthera.2015.05.498 | DOI Listing |
Pak J Pharm Sci
January 2025
Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China.
Brown adipose tissue (BAT) is an ideal target organ for obesity treatment. Resinacein S is extracted from Ganoderma lucidum and can elevate Uncoupling protein 1 (UCP1) in cells, but its related effects at the animal level are not clear. The mice were fed with high-fat diet to construct obesity models and treated with Resinacein S.
View Article and Find Full Text PDFFoods
December 2024
Department of Food Science and Technology, Oregon State University, Corvallis, OR 97331, USA.
A diet containing foods that are sources of S-methylmethionine (SMM), and its use as a dietary supplement, have demonstrated beneficial health effects. Thus, the objective of this work was to evaluate the inclusion of SMM as a dietary supplement in C57BL/6J high-fat-fed mice to verify whether this compound alone would be responsible for these positive effects. Mice were divided into three groups: LF (low-fat diet), HF (high-fat diet), and HF+SMM (high-fat diet plus SMM), and maintained for 10 weeks with water and food provided ad libitum.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Clinical Trial Center, Huzhou Central Hospital, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, 313000, People's Republic of China.
Purpose: The study aimed to investigate the pharmacokinetics and bioequivalence of coformulations of valsartan and amlodipine in healthy Chinese subjects under both fasting and fed conditions.
Methods: The research was conducted under both fasting and fed studies and employed a single-center, randomized, open-label, single-dose, three-period design with partial-repeat and crossover elements. A total of 71 healthy Chinese adult participants were included under fasting (n = 36) and fed (n = 35) conditions.
Pharmaceutics
December 2024
College of Pharmacy, Dongguk University-Seoul, Dongguk-ro-32, Ilsan-Donggu, Goyang 10326, Republic of Korea.
Background/objectives: A sustained-release formulation of fenofibrate while enhancing drug dissolution with minimal food effect is critical for maximizing the therapeutic benefits of fenofibrate. Therefore, this study aimed to develop an effective solid dispersion formulation of fenofibrate for simultaneous enhancement in the extent and duration of drug exposure.
Methods: Fenofibrate-loaded solid dispersions (FNSDs) were prepared using poloxamer 407 and Eudragit RSPO at varied ratios via solvent evaporation.
Biology (Basel)
December 2024
Research Group on Perinatal Programming of Metabolic Diseases: DOHaD Paradigm, Laboratory of Metabolic and Cardiovascular Diseases, Health Education and Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, University Campus of Sinop, Sinop 78556-264, Brazil.
Both perinatal malnutrition and elevated glucocorticoids are pivotal triggers of the growing global pandemic of metabolic diseases. Here, we studied the effects of metabolic stress responsiveness on glucose-insulin homeostasis and pancreatic-islet function in male Wistar offspring whose mothers underwent protein restriction during lactation. During the first two weeks after delivery, lactating dams were fed a low-protein (4% protein, LP group) or normal-protein diet (22.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!