Background: Malaria is a major health threat, affecting over 40% of the world's population. The latest report released by the World Health Organization estimated about 207 million cases of malaria infection, and about 627,000 deaths in 2012 alone. During the past decade, new therapeutic targets have been identified and are at various stages of characterization, thanks to the emerging omics-based technologies. However, the mechanism of malaria pathogenesis remains largely unknown. In this paper, we employ a novel neighborhood subnetwork alignment approach to identify network components that are potentially involved in pathogenesis.

Results: Our module-based subnetwork alignment approach identified 24 functional homologs of pathogenesis-related proteins in the malaria parasite P. falciparum, using the protein-protein interaction networks in Escherichia coli as references. Eighteen out of these 24 proteins are associated with 418 other proteins that are related to DNA replication, transcriptional regulation, translation, signaling, metabolism, cell cycle regulation, as well as cytoadherence and entry to the host.

Conclusions: The subnetwork alignments and subsequent protein-protein association network mining predicted a group of malarial proteins that may be involved in parasite development and parasite-host interaction, opening a new systems-level view of parasite pathogenesis and virulence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474416PMC
http://dx.doi.org/10.1186/1752-0509-9-S4-S1DOI Listing

Publication Analysis

Top Keywords

network components
8
components involved
8
malaria parasite
8
subnetwork alignments
8
subnetwork alignment
8
alignment approach
8
malaria
5
predicting exploring
4
exploring network
4
involved pathogenesis
4

Similar Publications

ClpXP is a two-component mitochondrial matrix protease. The caseinolytic mitochondrial matrix peptidase chaperone subunit X (ClpX) recognizes and translocates protein substrates into the degradation chamber of the caseinolytic protease P (ClpP) for proteolysis. ClpXP degrades damaged respiratory chain proteins and is necessary for cancer cell survival.

View Article and Find Full Text PDF

Xuefu Zhuyu Decoction (XZD) is widely used in the treatment of cardiovascular diseases. The purpose of this study was to explore the pharmacological effects and molecular mechanisms of XZD in improving hyperlipidemia and to provide a theoretical framework for clinical application. In this study, the signaling pathways regulated by XZD in improving hyperlipidemia were predicted by network pharmacology.

View Article and Find Full Text PDF

Crystallography of the litharge to massicot phase transformation from neutron powder diffraction data.

Acta Crystallogr B Struct Sci Cryst Eng Mater

February 2025

CSIRO Division of Mineral Products, Port Melbourne, Victoria, Australia.

The crystallographic phase change from tetragonal litharge (α-PbO; P4/nmm) to orthorhombic massicot (β-PbO; Pbcm) has been studied by full-matrix Rietveld analysis of high-temperature neutron powder diffraction data collected in equal steps from ambient temperature up to 925 K and back down to 350 K. The phase transformation takes place between 850 and 925 K, with the coexisting phases having equal abundance by weight at 885 K. The product massicot remains metastable on cooling to near ambient temperature.

View Article and Find Full Text PDF

Cell-Free Systems to Mimic and Expand Metabolism.

ACS Synth Biol

January 2025

Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.

Cell-free synthetic biology incorporates purified components and/or crude cell extracts to carry out metabolic and genetic programs. While protein synthesis has historically been the primary focus, more metabolism researchers are now turning toward cell-free systems either to prototype pathways for cellular implementation or to design new-to-nature reaction networks that incorporate environmentally relevant substrates or new energy sources. The ability to design, build, and test enzyme combinations has accelerated efforts to understand metabolic bottlenecks and engineer high-yielding pathways.

View Article and Find Full Text PDF

Unlocking the potential of : A breakthrough in liver cancer treatment Wnt/β-catenin pathway modulation.

World J Gastroenterol

January 2025

Department of Internal Medicine, Mixed Hospital of Laghouat, Laghouat Faculty of Medicine, Amar Telidji University, Laghouat 03000, Algeria.

Liver cancer remains a significant global health challenge, characterized by high incidence and mortality rates. Despite advancements in medical treatments, the prognosis for liver cancer patients remains poor, highlighting the urgent need for novel therapeutic approaches. Traditional Chinese medicine (TCM), particularly (CB), has shown promise in addressing this need due to its multi-target therapeutic mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!