Background: Laparoscopic resection is a minimally invasive treatment option for rectal cancer but requires highly experienced surgeons. Computer-aided technologies could help to improve safety and efficiency by visualizing risk structures during the procedure. The prerequisite for such an image guidance system is reliable intraoperative information on iatrogenic tissue shift. This could be achieved by intraoperative imaging, which is rarely available. Thus, the aim of the present study was to develop and validate a method for real-time deformation compensation using preoperative imaging and intraoperative electromagnetic tracking (EMT) of the rectum.
Methods: Three models were compared and evaluated for the compensation of tissue deformation. For model A, no compensation was performed. Model B moved the corresponding points rigidly to the motion of the EMT sensor. Model C used five nested linear regressions with increasing level of complexity to compute the deformation (C1-C5). For evaluation, 14 targets and an EMT organ sensor were fit into a silicone-molded rectum of the OpenHELP phantom. Following a computed tomography, the image guidance was initiated and the rectum was deformed in the same way as during surgery in a total of 14 experimental runs. The target registration error (TRE) was measured for all targets in different positions of the rectum.
Results: The mean TRE without correction (model A) was 32.8 ± 20.8 mm, with only 19.6% of the measurements below 10 mm (80.4% above 10 mm). With correction, the mean TRE could be reduced using the rigid correction (model B) to 6.8 ± 4.8 mm with 78.7% of the measurements being <10 mm. Using the most complex linear regression correction (model C5), the error could be reduced to 2.9 ± 1.4 mm with 99.8% being below 10 mm.
Conclusion: In laparoscopic rectal surgery, the combination of electromagnetic organ tracking and preoperative imaging is a promising approach to compensating for intraoperative tissue shift in real-time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00464-015-4231-9 | DOI Listing |
World J Gastroenterol
January 2025
Department of Therapy, North Caucasus State Academy, Cherkessk 369000, Russia.
() infection has a protective effect on gastroesophageal reflux disease (GERD). Both of these diseases have a very high incidence and prevalence. As a result, GERD often recurs after anti- therapy.
View Article and Find Full Text PDFIn living organisms, the natural motion caused by heartbeat, breathing, or muscle movements leads to the deformation of tissue caused by translation and stretching of the tissue structure. This effect results in the displacement or deformation of the plane of observation for intravital microscopy and causes motion-induced aberrations of the resulting image data. This, in turn, places severe limitations on the time during which specific events can be observed in intravital imaging experiments.
View Article and Find Full Text PDFUltrasound Med Biol
January 2025
Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute of Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China. Electronic address:
Objective: To investigate the effects of ultrasound treatment on the healing of hip bone fractures using frequencies of 0.5 MHz and 1.5 MHz with constant intensity (30 mW/cm) at the fractured site.
View Article and Find Full Text PDFBiochimie
January 2025
Jagiellonian University Medical College, Faculty of Health Sciences, Department of Medical Physiology, Chair of Biomedical Sciences, 12 Michalowskiego st., 33-332 Cracow, Poland.
Obesity treatment requires an individualized approach, emphasizing the need to identify metabolic pathways of diagnostic relevance. Toll-like receptors (TLRs), particularly TLR2 and TLR4, play a crucial role in metabolic disorders, as receptor deficiencies improves insulin sensitivity and reduces obesity-related inflammation. Additionally, hydrogen sulfide (HS) influences lipolysis, adipogenesis, and adipose tissue browning through persulfidation.
View Article and Find Full Text PDFBackground: A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!