Little information is available on the molecular mechanisms of boron (B)-induced alleviation of aluminum (Al)-toxicity. 'Sour pummelo' (Citrus grandis) seedlings were irrigated for 18 weeks with nutrient solution containing different concentrations of B (2.5 or 20μM H3BO3) and Al (0 or 1.2mM AlCl3·6H2O). B alleviated Al-induced inhibition in plant growth accompanied by lower leaf Al. We used cDNA-AFLP to isolate 127 differentially expressed genes from leaves subjected to B and Al interactions. These genes were related to signal transduction, transport, cell wall modification, carbohydrate and energy metabolism, nucleic acid metabolism, amino acid and protein metabolism, lipid metabolism and stress responses. The ameliorative mechanisms of B on Al-toxicity might be related to: (a) triggering multiple signal transduction pathways; (b) improving the expression levels of genes related to transport; (c) activating genes involved in energy production; and (d) increasing amino acid accumulation and protein degradation. Also, genes involved in nucleic acid metabolism, cell wall modification and stress responses might play a role in B-induced alleviation of Al-toxicity. To conclude, our findings reveal some novel mechanisms on B-induced alleviation of Al-toxicity at the transcriptional level in C. grandis leaves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2015.06.009 | DOI Listing |
Int J Med Sci
February 2025
Chinese PLA Medical School, Chinese PLA General Hospital, Beijing 100853, China.
Solar dermatitis, a condition triggered by excessive exposure to ultraviolet B (UVB) radiation, results in inflammatory skin damage marked by erythema, edema, and epidermal injury. Portulaca oleracea (PO) and Patrinia scabiosaefolia (PS) have been traditionally used in dermatological treatments, though their mechanistic pathways in UVB-induced skin injury are not fully understood. In this study, a mouse model of UVB-induced solar dermatitis was employed to evaluate the therapeutic potential of combined PO and PS (POPS) extracts.
View Article and Find Full Text PDFProtoplasma
February 2025
College of Life Sciences, Shanxi Normal University, Taiyuan, 030000, China.
Cerium oxide nanoparticles (CeO-NPs) have been widely applied worldwide. In the field of agriculture, they have gained attention for their ability to promote seed germination, root elongation, and biomass accumulation in plants, as well as to increase plant resistance to various abiotic stresses. However, the underlying molecular mechanisms remain to be elucidated.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
Mycosporine-glycine (M-Gly), a member of the mycosporine-like amino acid (MAA) family, is known for its potent antioxidant and anti-inflammatory properties. However, its in vivo efficacy in alleviating acute skin photodamage, primarily caused by oxidative stress, has not been well explored. In this investigation, 30 female ICR mice were divided into four groups: a control group and three Ultraviolet B (UVB)-exposed groups treated with saline or M-Gly via intraperitoneal injection for 30 days.
View Article and Find Full Text PDFAm J Chin Med
February 2025
Department of Pharmacology, Shaanxi University of Chinese Medicine, No. 1, Middle Section of Century Avenue, Xianyang 712046, P. R. China.
This study aimed to clarify the protective effect of Glycyrrhizic acid (GL) against Diosbulbin B (DB) - induced liver injury in mice and investigate its mechanisms of action. A liver injury DB was established in mice through the oral administration of DB for 15 days. At the same time, GL was administered to the mice for treatment.
View Article and Find Full Text PDFCurr Eye Res
December 2024
Department of Ophthalmology, First Affiliated Hospital of Guangxi Medical University, Nanning, China.
Purpose: Oxidative stress, ultraviolet radiation, and calcium imbalance are key components in the onset and advancement of cataract, which continue to be the leading cause of blindness globally. An important newly discovered aging maker, Senescence marker protein 30 (SMP30) regulates calcium and participates in mitigating oxidative stress damage. Here, we examined the beneficial role of SMP30 in protecting against ultraviolet radiation type B (UVR-B)-induced cataract in rats.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!