Background: High-throughput in vivo protein-DNA interaction experiments are currently widely used in gene regulation studies. Hitherto, comprehensive data analysis remains a challenge and for that reason most computational methods only consider the top few hundred or thousand strongest protein binding sites whereas weak protein binding sites are completely ignored.
Results: A new biophysical model of protein-DNA interactions, BayesPI2+, was developed to address the above-mentioned challenges. BayesPI2+ can be run in either a serial computation model or a parallel ensemble learning framework. BayesPI2+ allowed us to analyze all binding sites of the transcription factors, including weak binding that cannot be analyzed by other models. It is evaluated in both synthetic and real in vivo protein-DNA binding experiments. Analysing ESR1 and SPIB in breast carcinoma and activated B cell-like diffuse large B-cell lymphoma cell lines, respectively, revealed that the concerted binding to high and low affinity sites correlates best with gene expression.
Conclusions: BayesPI2+ allows us to analyze transcription factor binding on a larger scale than hitherto achieved. By this analysis, we were able to demonstrate that genes are regulated by concerted binding to high and low affinity binding sites. The program and output results are publicly available at: http://folk.uio.no/junbaiw/BayesPI2Plus.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4474539 | PMC |
http://dx.doi.org/10.1186/1471-2164-16-S7-S12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!