Comprehensive Tissue-Specific Transcriptome Analysis Reveals Distinct Regulatory Programs during Early Tomato Fruit Development.

Plant Physiol

Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (R.J.P., F.C., Y.Z., Z.F., C.C.);United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853 (Z.F.);Department of Horticulture and Crop Science, Ohio State University, Wooster, Ohio 44691 (E.v.d.K.); andPlant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853 (C.C.)

Published: August 2015

Fruit formation and early development involve a range of physiological and morphological transformations of the various constituent tissues of the ovary. These developmental changes vary considerably according to tissue type, but molecular analyses at an organ-wide level inevitably obscure many tissue-specific phenomena. We used laser-capture microdissection coupled to high-throughput RNA sequencing to analyze the transcriptome of ovaries and fruit tissues of the wild tomato species Solanum pimpinellifolium. This laser-capture microdissection-high-throughput RNA sequencing approach allowed quantitative global profiling of gene expression at previously unobtainable levels of spatial resolution, revealing numerous contrasting transcriptome profiles and uncovering rare and cell type-specific transcripts. Coexpressed gene clusters linked specific tissues and stages to major transcriptional changes underlying the ovary-to-fruit transition and provided evidence of regulatory modules related to cell division, photosynthesis, and auxin transport in internal fruit tissues, together with parallel specialization of the pericarp transcriptome in stress responses and secondary metabolism. Analysis of transcription factor expression and regulatory motifs indicated putative gene regulatory modules that may regulate the development of different tissues and hormonal processes. Major alterations in the expression of hormone metabolic and signaling components illustrate the complex hormonal control underpinning fruit formation, with intricate spatiotemporal variations suggesting separate regulatory programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528740PMC
http://dx.doi.org/10.1104/pp.15.00287DOI Listing

Publication Analysis

Top Keywords

regulatory programs
8
fruit formation
8
rna sequencing
8
fruit tissues
8
regulatory modules
8
regulatory
5
fruit
5
tissues
5
comprehensive tissue-specific
4
transcriptome
4

Similar Publications

Background: Lymphatic metastasis in gastric cancer (GC) profoundly influences its prognosis, but the precise mechanism remains elusive. In this study, we identified the long noncoding RNA MIR181A2HG as being upregulated in GC and associated with LNs metastasis and prognosis.

Methods: The expression of MIR181A2HG in GC was identified through bioinformatics screening analysis and qRT-PCR validation.

View Article and Find Full Text PDF

Artificial intelligence (AI) scribe applications in the healthcare community are in the early adoption phase and offer unprecedented efficiency for medical documentation. They typically use an application programming interface with a large language model (LLM), for example, generative pretrained transformer 4. They use automatic speech recognition on the physician-patient interaction, generating a full medical note for the encounter, together with a draft follow-up e-mail for the patient and, often, recommendations, all within seconds or minutes.

View Article and Find Full Text PDF

Objective: This study aimed to identify barriers and facilitators surrounding the implementation of TDOCS from Community Health Workers (CHW)'s perspective before TDOCS implementation.

Methods: A descriptive qualitative study was conducted through semistructured interviews with a purposive sampling of CHWs from partner nursing homes and home care teams. A French framework outlining barriers to asynchronous oral teleconsultation adoption was used to develop the topic guide for this study.

View Article and Find Full Text PDF

Probing the Active Nitrogen Species in Nitrogen-Doped Carbon Nanozymes for Enhanced Oxidase-Like Activity.

Small

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

Nitrogen doping emerges as a potent approach to enhance the oxidase-like activity of carbon nanozymes. However, the unclear knowledge of the active nitrogen species within nitrogen-doped carbon nanozymes hinders the advancement of high-performance carbon nanozymes. Herein, a group of nitrogen-doped carbon (N/C) nanozymes with controllable nitrogen dopants are successfully synthesized via a dicyandiamide-assisted pyrolysis method.

View Article and Find Full Text PDF

Background: Identification of genetic alleles associated with both Alzheimer's disease (AD) and concussion severity/recovery could help explain the association between concussion and elevated dementia risk. However, there has been little investigation into whether AD risk genes associate with concussion severity/recovery, and the limited findings are mixed.

Objective: We used AD polygenic risk scores (PRS) and APOE genotypes to investigate any such associations in the NCAA-DoD Grand Alliance CARE Consortium (CARE) dataset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!