The Ni(I) hydrogen oxidation catalyst [Ni(P(Cy)2N(tBu)2)2](+) (1(+); P(Cy)2N(tBu)2 = 1,5-di(tert-butyl)-3,7-dicyclohexyl-1,5-diaza-3,7-diphosphacyclooctane) has been studied using a combination of electron paramagnetic resonance (EPR) techniques (X-, Q-, and D-band, electron-nuclear double resonance, hyperfine sublevel correlation spectroscopy), X-ray crystallography, and density functional theory (DFT) calculations. Crystallographic and DFT studies indicate that the molecular structure of 1(+) is highly symmetrical. EPR spectroscopy has allowed determination of the electronic g tensor and the spin density distribution on the ligands, and revealed that the Ni(I) center does not interact strongly with the potentially coordinating solvents acetonitrile and butyronitrile. The EPR spectra and magnetic parameters of 1(+) are found to be distinctly different from those for the related compound [Ni(P(Ph)2N(Ph)2)2](+) (4(+)). One significant contributor to these differences is that the molecular structure of 4(+) is unsymmetrical, unlike that of 1(+). DFT calculations on derivatives in which the R and R' groups are systematically varied have allowed elucidation of structure/substituent relationships and their corresponding influence on the magnetic resonance parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4972093 | PMC |
http://dx.doi.org/10.1021/acs.inorgchem.5b00445 | DOI Listing |
J Mol Model
January 2025
Department of Physics, University of Malakand, Chakdara, Dir (Lower), 18800, KP, Pakistan.
Context: The structural stability, ground state magnetic order, electronic, elastic and thermoelectric properties of NdMn in the C15, C14 and C36 polytypic phases is investigated. The magnetic phase optimization and magnetic susceptibility reveal that NdMn is antiferromagnetic (AFM) in C36 phase; and paramagnetic (PM) in C14 and C15 phases respectively. The band profiles and electrical resistivity show the metallic nature in all these polytypic phases and reveal that the C36 phase possesses smaller resistivity.
View Article and Find Full Text PDFDalton Trans
January 2025
Hebei Center for New Inorganic Optoelectronic Nanomaterial Research, Hebei Key Laboratory of Heterocyclic Compounds, College of Chemical Engineering and Materials, Handan University, Handan 056002, P. R. China.
The isolation of a stable persistent carbazole-stabilized boron-centered monoradical anion 1˙, which has a high spin density at the B atom, has been reported. It is characterized using the crystal structure and UV-vis absorption spectrum, as well as electron paramagnetic resonance spectroscopy. Interestingly, the B-N bond was activated by the boron-centered radical anion 1˙, which had not been reported before.
View Article and Find Full Text PDFSmall
January 2025
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, Hubei, 430078, P. R. China.
Hydrogen peroxide (HO) production through photocatalytic O reduction reaction (ORR) is a mild and cost-efficient alternative to the anthraquinone oxidation strategy. Of note, singlet state oxygen (O) plays a crucial role in ORR. Herein, a hollow TiO@TpPa (TOTP) S-scheme heterojunction by the Schiff base reactions involving 1,3,5-triformylphloroglucinol (Tp) and paraphenylenediamine (Pa) for efficient photocatalytic HO production in deionized water has been developed.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, New York 11201, United States.
Electrosynthesis at an industrial scale offers an opportunity to use renewable electricity in chemical manufacturing, accelerating the decarbonization of large-scale chemical processes. Organic electrosynthesis can improve product selectivity, reduce reaction steps, and minimize waste byproducts. Electrochemical synthesis of adiponitrile (ADN) via hydrodimerization of acrylonitrile (AN) is a prominent example of industrial organic electrochemical processes, with annual production reaching 0.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China.
Noble metal nanoparticles have attracted tremendous attention as the promising signal reporters for catalytic-colorimetric lateral flow immunoassay (LFIA). However, it remains great challenges for improving their stability and catalytic activity. Herein, first, a kind of porphyrinic based metal-organic framework (MOF) was used as a carrier for loading platinum (Pt) nanoparticles to avoid its aggregation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!