A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Flow-Driven Rapid Vesicle Fusion via Vortex Trapping. | LitMetric

Flow-Driven Rapid Vesicle Fusion via Vortex Trapping.

Langmuir

Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States.

Published: July 2015

Fusion between suspended lipid vesicles is difficult to achieve without membrane proteins or ions because the vesicles have extremely low equilibrium membrane tension and high poration energy. Nonetheless, vesicle fusion in the absence of mediators can also be achieved by mechanical forcing that is strong enough to induce membrane poration. Here, we employ a strong fluid shear stress to achieve vesicle fusion. By utilizing a unique vortex formation phenomenon in branched channels as a platform for capturing, stressing, and fusing the lipid vesicles, we directly visualize using high-speed imaging the vesicle fusion events, induced solely by shear, on the time scale of submilliseconds. We show that a large vesicle with a size of up to ∼10 μm can be achieved by the fusion of nanoscale vesicles. This technique has the potential to be utilized as a fast and simple way to produce giant unilamellar vesicles and to serve as a platform for visualizing vesicle interactions and fusions in the presence of shear.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b01752DOI Listing

Publication Analysis

Top Keywords

vesicle fusion
16
lipid vesicles
8
vesicle
6
fusion
6
vesicles
5
flow-driven rapid
4
rapid vesicle
4
fusion vortex
4
vortex trapping
4
trapping fusion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!