Background: Although demonstrated as a selective anticancer drug, the clinical use of clotrimazole (CTZ) is limited due to its low solubility in hydrophilic fluids. Thus, we prepared a water-soluble nanomicellar formulation of CTZ (nCTZ) and tested on the human breast cancer cell line MCF-7 biology.
Methodology/principal Findings: CTZ was nanoencapsulated in tween 80 micelles, which generated nanomicelles of, approximately, 17 nm of diameter. MCF-7 cells were treated with nCTZ and unencapsulated DMSO-solubilized drug (sCTZ) was used for comparison. After treatment, the cells were evaluated in terms of metabolism, proliferation, survival and structure. We found that nCTZ was more efficient than sCTZ at inhibiting glycolytic and other cytosolic and mitochondrial enzymes. Moreover, this increased activity was also observed for lactate production, intracellular ATP content, ROS production and antioxidant potential. As a consequence, nCTZ-treated MCF-7 cells displayed alterations to the plasma membrane, mitochondria and the nucleus. Finally, nCTZ induced both apoptosis and necrosis in MCF-7 cells.
Conclusions/significance: MCF-7 cells are more sensible to nCTZ than to sCTZ. This was especially evident on regard to antioxidant potential, which is an important cell defense against drugs that affect cell metabolism. Moreover, this water-soluble formulation of CTZ strengths its potential use as an anticancer medicine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476588 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0130555 | PLOS |
Eur J Med Chem
December 2024
Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China. Electronic address:
Autophagy is a lysosome-dependent cellular degradation pathway that responds to a variety of environmental and cellular stresses, which is defective in aging and age-related diseases, therefore, targeting autophagy with small-molecule activators has potential therapeutic benefits. In this study, we successfully completed the first total synthesis of Ivesinol, an identified antibacterial natural product, and efficiently constructed a library of its analogs. To measure the effect of Ivesinol analogs on autophagic activity, we performed cell imaging-based screening approach, and observed that several Ivesinol analogs exhibited potent autophagy-regulating activity.
View Article and Find Full Text PDFFood Sci Nutr
December 2024
Food Science Department, Faculty of Agriculture Cairo University Giza Egypt.
This study explores honeybee as a food source through chemical analysis of pupa and adult stages of honeybee drones and workers ( L.). The findings reveal that drones exhibited higher protein and fat content, while workers have the highest carbohydrate levels.
View Article and Find Full Text PDFDrug Des Devel Ther
December 2024
Department of Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt.
Purpose: Nitrofurantoin (NITRO), a long-standing antibiotic to treat urinary tract infections, is activated by Nitro reductases. This activation mechanism has led to its exploration for repositioning applications in controlling and treating breast cancer, which express a Nitro reductase gene.
Methods: NITRO Cubosomes were developed using hot homogenization according to 2-full factorial design.
Nat Prod Res
December 2024
School of Science, Walailak University, Thasala, Nakhonsithammarat, Thailand.
Two new compounds including one benzaldehyde () and one azaphilone () were isolated from the marine-derived fungus PSU-AMF89 together with nine known compounds (-). Their structures were determined by spectroscopic evidences. The absolute configuration of was established by comparison of the ECD data with those of the previously reported data of compound as well as the biosynthetic consideration.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Botany, Sri Venkateswara University, Tirupati, A.P, 517502, India.
The study comprehensively investigated the therapeutic potential of triterpenoid saponin extract (GST), encompassing its hepatoprotective, immunomodulatory, and anticancer activities. The study employed a Prednisolone (PRD)-induced immunosuppressed rat model to assess the hepatoprotective and immunomodulatory effects of GST. Using this model, GST was found to modulate haematopoiesis, improving RBC, platelet, and WBC counts, underscoring its potential in hematopoietic homeostasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!