The experimental conditions by which electromagnetic signals (EMS) of low frequency can be emitted by diluted aqueous solutions of some bacterial and viral DNAs are described. That the recorded EMS and nanostructures induced in water carry the DNA information (sequence) is shown by retrieval of that same DNA by classical PCR amplification using the TAQ polymerase, including both primers and nucleotides. Moreover, such a transduction process has also been observed in living human cells exposed to EMS irradiation. These experiments suggest that coherent long-range molecular interaction must be present in water to observe the above-mentioned features. The quantum field theory analysis of the phenomenon is presented in this article.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/15368378.2015.1036072 | DOI Listing |
Sci Rep
December 2024
Department of Dermatology, Hebei Medical University Third Hospital, 139 Ziqiang Road, Shijiazhuang, 050000, Hebei, China.
To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.
View Article and Find Full Text PDFSci Rep
December 2024
Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711, USA.
The cyclic GMP-AMP synthase-stimulator of the interferon gene (cGAS-STING) signaling pathway is considered an essential pattern recognition and effector pathway in the natural immune system and is mainly responsible for recognizing DNA molecules present in the cytoplasm and activating downstream signaling pathways to generate type I interferons (IFN-I) and other inflammatory factors. STING, a crucial junction protein in the innate immune system, exerts an essential role in host resistance to external pathogen invasion. The DNA introduced by pathogens or tumors is recognized by the cytoplasmic nucleic acid receptor cGAS, and a second messenger, cGAMP, is generated using intracellular guanosine triphosphate (GTP) and adenosine triphosphate (ATP).
View Article and Find Full Text PDFClin Transl Med
January 2025
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Background: Sporadic aortic aneurysm and dissection (AAD) is a critical condition characterised by the progressive loss of vascular smooth muscle cells (VSMCs) and the breakdown of the extracellular matrix. However, the molecular mechanisms responsible for the phenotypic switch and loss of VSMCs in AAD are not fully understood.
Methods And Results: In this study, we employed a discovery-driven, unbiased approach.
BMC Cancer
December 2024
Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China.
Background: This study aimed to investigate the potential utility of Epithelial-mesenchymal transition (EMT) signaling cell detection in the early diagnosis of cervical lesions.
Methods: Enrichment of cervical epithelial cells was carried out using a calibrated membrane with 8-μm diameter pores. RNA-in situ hybridization (RNA-ISH) was employed to detect and characterize EMT cells utilizing specific EMT markers.
J Transl Med
December 2024
Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
Background: Mitochondrial transcription elongation factor (TEFM) is a recently discovered factor involved in mitochondrial DNA replication and transcription. Previous studies have reported that abnormal TEFM expression can disrupt the assembly of mitochondrial respiratory chain and thus mitochondrial function. However, the role of TEFM on Uterine corpus endometrial carcinoma (UCEC) progression remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!