Background: Recent studies reported altered DNA methylation in failing human hearts. This may suggest a role for de novo DNA methylation in the development of heart failure. Here, we tested whether cardiomyocyte-specific loss of de novo DNA methyltransferases Dnmt3a and Dnmt3b altered cardiac function and remodeling after chronic left ventricular pressure overload.
Methods: Mice with specific ablation of Dnmt3a and Dnmt3b expression in cardiomyocytes were generated by crossing floxed Dnmt3afl and Dnmt3bfl alleles with mice expressing Cre recombinase under control of the atrial myosin light chain gene promoter. The efficacy of combined Dnmt3a/3b ablation (DKO) was characterized on cardiomyocyte-specific genomic DNA and mRNA levels. Cardiac phenotyping was carried out without (sham) or with left ventricular pressure overload induced by transverse aortic constriction (TAC). Under similar conditions, cardiac genome-wide transcriptional profiling was performed and DNA methylation levels of promoters of differentially regulated genes were assessed by pyrosequencing.
Results: DKO cardiomyocytes showed virtual absence of targeted Dnmt3a and Dnmt3b mRNA transcripts. Cardiac phenotyping revealed no significant differences between DKO and control mice under sham and TAC conditions. Transcriptome analyses identified upregulation of 44 and downregulation of 9 genes in DKO as compared with control sham mice. TAC mice showed similar changes with substantial overlap of regulated genes compared to sham. Promoters of upregulated genes were largely unmethylated in DKO compared to control mice.
Conclusion: The absence of cardiac pathology in the presence of the predicted molecular phenotype suggests that de novo DNA methylation in cardiomyocytes is dispensable for adaptive mechanisms after chronic cardiac pressure overload.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476733 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131019 | PLOS |
Front Immunol
January 2025
Department of Otolaryngology, Changhai Hospital, Naval Medical University, Shanghai, China.
Background: There is no consensus regarding the optimal regimen for metastatic nasopharyngeal carcinoma (dmNPC). Locoregional intensity modulated radiotherapy (LRRT) following palliative chemotherapy (PCT) has been shown to prolong the overall survival (OS) and improve the progression-free survival (PFS) of patients with dmNPC, compared with PCT alone. However, patients with a high tumor burden do not benefit from additional LRRT, which inevitably results in toxicity.
View Article and Find Full Text PDFJ Microbiol Biotechnol
December 2024
Department of Life science, Chung-Ang University, Seoul 06974, Republic of Korea.
Endosymbionts are important for insect species as they provide essential substances to the host. Due to the technical advance of NGS technology and assemblers, many endosymbionts bacterial genomes are available now. Here, we analysed fourteen endosymbiont bacterial genomes of genius, one of notorious pest species.
View Article and Find Full Text PDFJ Hered
January 2025
Department of Biomolecular Engineering, University of California, Santa Cruz; Santa Cruz, CA 95064, USA.
The Pacific banana slug, Ariolimax columbianus, is endemic to the forests of the Pacific Northern West. Found throughout coastal foothills and mountains of California, the hermaphroditic molluscs Ariolimax spp. are niche-constrained, hyper-localized, and phenotypically diverse.
View Article and Find Full Text PDFJ Med Case Rep
January 2025
Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, 130021, China.
Background: Dyskeratosis congenita is a rare genetic disease due to telomere biology disorder and characterized by heterogeneous clinical manifestations and severe complications. "Porto-sinusoidal vascular disease" has been recently proposed, according to new diagnostic criteria, to replace the term "idiopathic non-cirrhotic portal hypertension." TERT plays an important role in telomeric DNA repair and replication.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Science and Biotechnology Research Group, School of Life Sciences and Technology, Institut Teknologi Bandung, West Java, 40132, Indonesia.
Agarwood is a highly prized resinous wood produced by select members of the Thymelaeaceae plant family. Its formation in Aquilaria species has been expedited using various induction techniques, revealing insights into factors affecting the chemical constituents of artificially induced agarwood. Building on this, our research delved into the potential of another Thymelaeaceae member, Gyrinops versteegii, as an alternate agarwood source.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!