Cardiac Myocyte De Novo DNA Methyltransferases 3a/3b Are Dispensable for Cardiac Function and Remodeling after Chronic Pressure Overload in Mice.

PLoS One

Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, 79104, Freiburg, Germany.

Published: April 2016

Background: Recent studies reported altered DNA methylation in failing human hearts. This may suggest a role for de novo DNA methylation in the development of heart failure. Here, we tested whether cardiomyocyte-specific loss of de novo DNA methyltransferases Dnmt3a and Dnmt3b altered cardiac function and remodeling after chronic left ventricular pressure overload.

Methods: Mice with specific ablation of Dnmt3a and Dnmt3b expression in cardiomyocytes were generated by crossing floxed Dnmt3afl and Dnmt3bfl alleles with mice expressing Cre recombinase under control of the atrial myosin light chain gene promoter. The efficacy of combined Dnmt3a/3b ablation (DKO) was characterized on cardiomyocyte-specific genomic DNA and mRNA levels. Cardiac phenotyping was carried out without (sham) or with left ventricular pressure overload induced by transverse aortic constriction (TAC). Under similar conditions, cardiac genome-wide transcriptional profiling was performed and DNA methylation levels of promoters of differentially regulated genes were assessed by pyrosequencing.

Results: DKO cardiomyocytes showed virtual absence of targeted Dnmt3a and Dnmt3b mRNA transcripts. Cardiac phenotyping revealed no significant differences between DKO and control mice under sham and TAC conditions. Transcriptome analyses identified upregulation of 44 and downregulation of 9 genes in DKO as compared with control sham mice. TAC mice showed similar changes with substantial overlap of regulated genes compared to sham. Promoters of upregulated genes were largely unmethylated in DKO compared to control mice.

Conclusion: The absence of cardiac pathology in the presence of the predicted molecular phenotype suggests that de novo DNA methylation in cardiomyocytes is dispensable for adaptive mechanisms after chronic cardiac pressure overload.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476733PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0131019PLOS

Publication Analysis

Top Keywords

novo dna
16
dna methylation
16
pressure overload
12
dnmt3a dnmt3b
12
cardiac
8
dna methyltransferases
8
cardiac function
8
function remodeling
8
remodeling chronic
8
left ventricular
8

Similar Publications

Background: There is no consensus regarding the optimal regimen for metastatic nasopharyngeal carcinoma (dmNPC). Locoregional intensity modulated radiotherapy (LRRT) following palliative chemotherapy (PCT) has been shown to prolong the overall survival (OS) and improve the progression-free survival (PFS) of patients with dmNPC, compared with PCT alone. However, patients with a high tumor burden do not benefit from additional LRRT, which inevitably results in toxicity.

View Article and Find Full Text PDF

Endosymbionts are important for insect species as they provide essential substances to the host. Due to the technical advance of NGS technology and assemblers, many endosymbionts bacterial genomes are available now. Here, we analysed fourteen endosymbiont bacterial genomes of genius, one of notorious pest species.

View Article and Find Full Text PDF

The Pacific banana slug, Ariolimax columbianus, is endemic to the forests of the Pacific Northern West. Found throughout coastal foothills and mountains of California, the hermaphroditic molluscs Ariolimax spp. are niche-constrained, hyper-localized, and phenotypically diverse.

View Article and Find Full Text PDF

TERT de novo mutation-associated dyskeratosis congenita and porto-sinusoidal vascular disease: a case report.

J Med Case Rep

January 2025

Department of Hepatic Biliary Pancreatic Medicine, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, 130021, China.

Background: Dyskeratosis congenita is a rare genetic disease due to telomere biology disorder and characterized by heterogeneous clinical manifestations and severe complications. "Porto-sinusoidal vascular disease" has been recently proposed, according to new diagnostic criteria, to replace the term "idiopathic non-cirrhotic portal hypertension." TERT plays an important role in telomeric DNA repair and replication.

View Article and Find Full Text PDF

Agarwood is a highly prized resinous wood produced by select members of the Thymelaeaceae plant family. Its formation in Aquilaria species has been expedited using various induction techniques, revealing insights into factors affecting the chemical constituents of artificially induced agarwood. Building on this, our research delved into the potential of another Thymelaeaceae member, Gyrinops versteegii, as an alternate agarwood source.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!