Species showing color polymorphisms-the presence of two or more genetically determined color morphs within a single population-are excellent systems for studying the selective forces driving the maintenance of genetic diversity. Despite a shortage of empirical evidence, it is often suggested that negative frequency-dependent mate preference by males (or diet choice by predators) results in fitness benefits for the rare female morph (or prey type). Moreover, most studies have focused on the male (or predator) behavior in these systems and largely overlooked the importance of female (or prey) resistance behavior. Here, we provide the first explicit test of the role of frequency-dependent and frequency-independent intersexual interactions in female polymorphic damselflies. We identify the stage of the mating sequence when frequency-dependent selection is likely to act by comparing indexes of male mate preference when the female has little (females presented on sticks), moderate (females in cages), and high (females free to fly in the field) ability to avoid male mating attempts. Frequency-dependent male preferences were found only in those experiments where females had little ability to resist male harassment, indicating that premating interactions most likely drive negative frequency-dependent selection in this system. In addition, by separating frequency-dependent male mating preference from the baseline frequency-independent component, we reconcile the seemingly contradictory results of previous studies and highlight the roles of both forms of selection in maintaining the polymorphism at a given equilibrium. We conclude that considering interactions among all players-here, males and females-is crucial to fully understanding the mechanisms underlying the maintenance of genetic polymorphisms in the wild.

Download full-text PDF

Source
http://dx.doi.org/10.1086/681005DOI Listing

Publication Analysis

Top Keywords

frequency-dependent selection
12
premating interactions
8
maintenance genetic
8
negative frequency-dependent
8
mate preference
8
male mating
8
frequency-dependent male
8
frequency-dependent
7
male
6
female
5

Similar Publications

Mitochondria, cellular powerhouses, harbor DNA (mtDNA) inherited from the mothers. MtDNA mutations can cause diseases, yet whether they increase with age in human germline cells-oocytes-remains understudied. Here, using highly accurate duplex sequencing of full-length mtDNA, we detected mutations in single oocytes, blood, and saliva in women between 20 and 42 years of age.

View Article and Find Full Text PDF

The epidemiology and evolution of diseases unfold in populations that are rarely homogeneous. Instead, hosts infected by pathogens often form metapopulations, in which local populations connected by the movement of hosts experience different demographic and epidemiological conditions. Here, we develop a general theory of the evolution of pathogens in heterogeneous metapopulations.

View Article and Find Full Text PDF

Acoustic waves provide an effective method for object manipulation in microfluidics, often requiring high-frequency ultrasound in the megahertz range when directly handling microsized objects, which can be costly. Micro-air-bubbles in water offer a solution toward low-cost technologies using low-frequency acoustic waves. Owing to their high compressibility and low elastic modulus, these bubbles can exhibit significant expansion and contraction in response to even kilohertz acoustic waves, leading to resonances with frequencies determined and tuned by air-bubble size.

View Article and Find Full Text PDF

An efficient trigonometrical-fitted two-derivative multistep collocation (TF-TDMC) method using Legendre polynomials up to order five as the basis functions, has been developed for solving second-order ordinary differential equations with oscillatory solution effectively. Interpolation method of approximated power series and collocation technique of its second and third derivative are implemented in the construction of the methods. Two-derivative multistep collocation methods are developed in predictor and corrector form with varying collocation and interpolation points.

View Article and Find Full Text PDF

Social learning with complex contagion.

Proc Natl Acad Sci U S A

December 2024

Program in Applied Mathematics & Computational Science, University of Pennsylvania, Philadelphia, PA 19104.

Article Synopsis
  • Traditional social learning models suggest that individuals imitating successful neighbors rely on simple contagion, often needing only one interaction to change behavior.
  • The study introduces a new framework that incorporates both simple payoff-biased imitation and complex contagion, allowing for multiple exposures before individuals decide to alter their behavior.
  • This updated model produces distinct outcomes in various games (like the Prisoner’s Dilemma and Coordination game) compared to traditional models, revealing how social behaviors can evolve in more realistic ways based on the interplay between contagion complexity and imitation bias.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!