The therapeutic limitations of conventional chemotherapeutic drugs have emerged as a challenge for breast cancer therapy; these shortcomings are likely due, at least in part, to the presence of the cancer stem cells (CSCs). Salinomycin, a polyether antibiotic isolated from Streptomyces albus, has been shown to selectively inhibit cancer stem cells; however, its clinical application has been hindered by the drug's hydrophobility, which limits the available administration routes. In this paper, a novel drug delivery system, cross-linked multilamellar liposomal vesicles (cMLVs), was optimized to allow for the codelivery of salinomycin (Sal) and doxorubicin (Dox), targeting both CSCs and breast cancer cells. The results show that the cMLV particles encapsulating different drugs have similar sizes with high encapsulation efficiencies (>80%) for both Dox and Sal. Dox and Sal were released from the particles in a sustained manner, indicating the stability of the cMLVs. Moreover, the inhibition of cMLV(Dox+Sal) against breast cancer cells was stronger than either single-drug treatment. The efficient targeting of cMLV(Dox+Sal) to CSCs was validated through in vitro experiments using breast cancer stem cell markers. In accordance with the in vitro combination treatment, in vivo breast tumor suppression by cMLV(Dox+Sal) was 2-fold more effective than single-drug cMLV treatment or treatment with the combination of cMLV(Dox) and cMLV(Sal). Thus, this study demonstrates that cMLVs represent a novel drug delivery system that can serve as a potential platform for combination therapy, allowing codelivery of an anticancer agent and a CSC inhibitor for the elimination of both breast cancer cells and cancer stem cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mp500754r | DOI Listing |
Breast Cancer Res
January 2025
Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Jiefang Road, Hangzhou, Zhejiang, China.
Background: Neoadjuvant chemotherapy (NACT) is the standard-of-care treatment for patients with locally advanced breast cancer (LABC), providing crucial benefits in tumor downstaging. Clinical parameters, such as molecular subtypes, influence the therapeutic impact of NACT. Moreover, severe adverse events delay the treatment process and reduce the effectiveness of therapy.
View Article and Find Full Text PDFBMC Cancer
January 2025
Division of Clinical Research and Technological Development, Brazilian National Cancer Institute, 37 Andre Cavalcanti Street, 5th floor, Annex Building, 20231050, Rio de Janeiro, Brazil.
Background: Breast cancer (BC) has exhibited varied epidemiological trends based on distinct age categories. This research aimed to explore the incidence and mortality rates of BC within pre-defined age groups in the Brazilian population.
Methods: BC incidence trends were assessed from 2010 to 2015 using Brazilian Population-Based Cancer Registries, employing age-standardized ratios and annual average percentage change (AAPC).
BMC Med Imaging
January 2025
Electronics and Communications, Arab Academy for Science, Heliopolis, Cairo, 2033, Egypt.
Invasive breast cancer diagnosis and treatment planning require an accurate assessment of human epidermal growth factor receptor 2 (HER2) expression levels. While immunohistochemical techniques (IHC) are the gold standard for HER2 evaluation, their implementation can be resource-intensive and costly. To reduce these obstacles and expedite the procedure, we present an efficient deep-learning model that generates high-quality IHC-stained images directly from Hematoxylin and Eosin (H&E) stained images.
View Article and Find Full Text PDFBreast Cancer Res Treat
January 2025
University of Pittsburgh School of Medicine (Center for Clinical Genetics and Genomics), Pittsburgh, PA, USA.
Breast Cancer Res Treat
January 2025
Department of Public Health Sciences, University of Virginia, 560 Ray C Hunt Dr., Room 2107, Charlottesville, VA, USA.
Purpose: While previous research has highlighted treatment delay inequities in early-stage breast cancer and identified potential contributing factors, there is limited research on disparities in treatment delays for metastatic breast cancer (MBC). This study investigates these disparities in MBC treatment initiation, aiming to identify key factors crucial for improving timely access to care.
Method: Nationwide Flatiron Health electronic health records-derived deidentified database, including females aged 18+ diagnosed with either De novo or relapsed MBC in the U.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!