Single-cell magnetic imaging using a quantum diamond microscope.

Nat Methods

Quantum Diamond Technologies, Inc., Somerville, MA, USA.

Published: August 2015

We apply a quantum diamond microscope for detection and imaging of immunomagnetically labeled cells. This instrument uses nitrogen-vacancy (NV) centers in diamond for correlated magnetic and fluorescence imaging. Our device provides single-cell resolution and a field of view (∼1 mm(2)) two orders of magnitude larger than that of previous NV imaging technologies, enabling practical applications. To illustrate, we quantified cancer biomarkers expressed by rare tumor cells in a large population of healthy cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4521973PMC
http://dx.doi.org/10.1038/nmeth.3449DOI Listing

Publication Analysis

Top Keywords

quantum diamond
8
diamond microscope
8
single-cell magnetic
4
imaging
4
magnetic imaging
4
imaging quantum
4
microscope apply
4
apply quantum
4
microscope detection
4
detection imaging
4

Similar Publications

In Vivo Nanodiamond Quantum Sensing of Free Radicals in Caenorhabditis elegans Models.

Adv Sci (Weinh)

January 2025

Department of Biomaterials & Biomedical Technology (BBT), University Medical Centre Groningen (UMCG), Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands.

Free radicals are believed to play a secondary role in the cell death cascade associated with various diseases. In Huntington's disease (HD), the aggregation of polyglutamine (PolyQ) not only contributes to the disease but also elevates free radical levels. However, measuring free radicals is difficult due to their short lifespan and limited diffusion range.

View Article and Find Full Text PDF

The charge state of a quantum point defect in a solid-state host strongly determines its optical and spin characteristics. Consequently, techniques for controlling the charge state are required to realize technologies for quantum networking and sensing. In this work, we demonstrate the use of deep-ultraviolet (DUV) radiation to dynamically neutralize nitrogen- (NV) and silicon-vacancy (SiV) centers.

View Article and Find Full Text PDF

Atomic defects in solids offer a versatile basis to study and realize quantum phenomena and information science in various integrated systems. All-electrical pumping of single defects to create quantum light emission has been realized in several platforms including color centers in diamond and silicon carbide, which could lead to the circuit network of electrically triggered single-photon sources. However, a wide conduction channel which reduces the carrier injection per defect site has been a major obstacle.

View Article and Find Full Text PDF

Intervalence plasmons in boron-doped diamond.

Nat Commun

January 2025

Department of Nuclear, Plasma, and Radiological Engineering, The Grainger College of Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA.

Doped semiconductors can exhibit metallic-like properties ranging from superconductivity to tunable localized surface plasmon resonances. Diamond is a wide-bandgap semiconductor that is rendered electronically active by incorporating a hole dopant, boron. While the effects of boron doping on the electronic band structure of diamond are well-studied, any link between charge carriers and plasmons has never been shown.

View Article and Find Full Text PDF

Irradiation of condensed matter with ionizing radiation generally causes direct photoionization as well as secondary processes that often dominate the ionization dynamics. Here, large helium (He) nanodroplets with radius ≳ 40 nm doped with lithium (Li) atoms are irradiated with extreme ultraviolet (XUV) photons of energy hν ≥ 44.4 eV and indirect ionization of the Li dopants is observed in addition to direct photoionization of the He droplets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!