The aim of this study was to determine the expression patterns of bone morphogenetic protein 7 (BMP7) during anorectal development in normal rat embryos and in embryos with anorectal malformations (ARM), and to investigate the possible role of BMP7 in the pathogenesis of ARM. ARM was induced by treating rat embryos with ethylenethiourea on the 10th gestational day (GD10). Embryos were harvested by Cesarean delivery and the spatiotemporal expression of BMP7 was evaluated in normal (n=168) and ARM embryos (n=171) from GD13 to GD16 using immunohistochemistry staining and western blot analysis. Immunohistochemical staining in normal embryos revealed that BMP7 was abundantly expressed on the epithelium of the urorectal septum (URS) and the hindgut on GD13, and BMP7-immunopositive cells were extensively detected in the URS, hindgut, and cloacal membrane by GD14. Increased positive tissue staining was noted on the fused tissue of the URS and the thin anal membrane on GD15. In ARM embryos, the epithelium of the cloaca, URS, and anorectum were negatively or only faintly immunostained for BMP7. BMP7 protein expression showed time-dependent changes in the developing hindgut according to western blotting, and reached a peak on GD15 during anus formation. BMP7 expression levels from GD14 to GD15 were significantly lower in the ARM group compared with the normal group (P<0.05). Spatiotemporal expression of BMP7 was disrupted in ARM embryos during anorectal morphogenesis from GD13 to GD16. These results suggest that downregulation of BMP7 at the time of cloacal separation into the primitive rectum and UGS might be related to the development of ARM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4466941 | PMC |
NeuroImmune Pharm Ther
September 2024
Department of Neurobiology, The University of Texas Medical Branch (UTMB), Galveston, TX, USA.
A major barrier to cure HIV is the early generation of viral reservoirs in tissues. These viral reservoirs can contain intact or defective proviruses, but both generates low levels of viral proteins contribute to chronic bystander damage even in the ART era. Most viral reservoir detection techniques are limited to blood-based, reactivation, and sequencing assays that lack spatial properties to examine the contribution of the host's microenvironment to latency and cure efforts.
View Article and Find Full Text PDFMol Plant
January 2025
College of Life Sciences, Wuhan University, Wuhan 430072, China; Institute for Advanced Studies, Wuhan University, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430072, China; TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China. Electronic address:
Cotton is the world's most important natural fiber crop and serves as an ideal model for studying plant genome evolution, cell differentiation, elongation, and cell wall biosynthesis. The first draft of the cotton genome for Gossypium raimondii, completed in 2012, marked the beginning of global efforts in cotton genomics. Over the past decade, the cotton research community has continued to assemble and refine genomes for both wild and cultivated Gossypium species.
View Article and Find Full Text PDFNature
January 2025
School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
Tissue-resident memory CD8 T (T) cells provide protection from infection at barrier sites. In the small intestine, T cells are found in at least two distinct subpopulations: one with higher expression of effector molecules and another with greater memory potential. However, the origins of this diversity remain unknown.
View Article and Find Full Text PDFNature
January 2025
Institute of Computational Biology, Helmholtz Center, Munich, Germany.
Single-cell genomic technologies enable the multimodal profiling of millions of cells across temporal and spatial dimensions. However, experimental limitations hinder the comprehensive measurement of cells under native temporal dynamics and in their native spatial tissue niche. Optimal transport has emerged as a powerful tool to address these constraints and has facilitated the recovery of the original cellular context.
View Article and Find Full Text PDFExp Anim
January 2025
Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo.
Rats (Rattus norvegicus) have been widely utilized as model animals due to their physiological characteristics, making them suitable for surgical and long-term studies. They have played a crucial role in biomedical research, complementing studies conducted in mice. The advent of genome editing technologies has facilitated the generation of genetically modified rat strains, advancing studies in experimental animals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!