Polycan suppresses osteoclast differentiation and titanium particle-induced osteolysis in mice.

J Biomed Mater Res B Appl Biomater

Department of Preventive Dentistry, School of Dentistry, Kyungpook National University, 2-188-1 Jung-Gu, Samduk-Dong, 700-412, Daegu, Republic of Korea.

Published: August 2016

Particle-induced osteolysis is a major issue, and it is most likely the result of enhanced osteoclast activation in the pathogenesis of various skeletal diseases. This study investigated whether the inhibitory effect that Polycan has on osteoclast differentiation can be used to treat osteolysis induced by titanium (Ti) particles. To this end, the effects of Polycan were examined in terms of the cytotoxicity, osteoclast differentiation, cytokine expression, and Ti-induced calvarial osteolysis. Polycan had no significant cytotoxic effects on bone marrow macrophages (BMMs) but instead increased BMM proliferation. High levels of interleukin (IL)-6, IL-12, and macrophage colony-stimulating factor (M-CSF) were expressed in BMM cells in the presence of Polycan, suggesting that Polycan drives the differentiation of BMMs into M1 macrophages. Polycan significantly inhibited osteoclast differentiation induced by M-CSF and the receptor activator of nuclear factor kappa-B ligand (RANKL). The expression levels of the osteoclast marker genes significantly decreased, and Polycan induced and maintained the expression of IL-12, which suppressed osteoclast differentiation. In contrast, the RANKL signaling pathway was not inhibited by Polycan. An in vivo calvarial osteolysis model revealed that Polycan significantly decreased the osteoclast numbers and suppressed osteolysis. Our results suggest that the natural compound Polycan is a good candidate for therapeutic intervention against enhanced osteoclast differentiation and Ti particle-induced osteolysis. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1170-1175, 2016.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.33415DOI Listing

Publication Analysis

Top Keywords

osteoclast differentiation
24
particle-induced osteolysis
12
polycan
11
osteoclast
9
enhanced osteoclast
8
calvarial osteolysis
8
differentiation
7
osteolysis
7
polycan suppresses
4
suppresses osteoclast
4

Similar Publications

Transcriptional regulation of Rankl by Txnip-Ecd in aging and diabetic related osteoporosis.

J Adv Res

January 2025

Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China. Electronic address:

Introduction: Bone homeostasis between osteoclast bone resorption and osteoblastic bone formation is tightly regulated by a series of factors such as the receptor activator of nuclear factor-κB ligand (RANKL). Denosumab that neutralizes RANKL is effective and widely applied in the treatment of postmenopausal osteoporosis. However, factors that participated in the RANKL-related bone remodeling process in primary and secondary osteoporosis are less known.

View Article and Find Full Text PDF

Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.

View Article and Find Full Text PDF

Yak milk inhibits osteoclast differentiation by suppressing TRPV5 expression.

J Dairy Sci

January 2025

Department of Food Science and Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Xinjiang University, Urumqi 830046, China.

Yak milk is a potential nutrient for improving osteoporosis. However, the effect of yak milk on the expression of Caion channel TRPV5 during osteoclast (OC) differentiation is still unclear. This study used ruthenium red as a control to investigate the effect of yak milk on osteoclast differentiation and activity.

View Article and Find Full Text PDF

We have previously demonstrated that DEC1 promotes osteoblast differentiation. This study aims to evaluate the impact of DEC1 knockout on osteopenic activities, such as osteoclast differentiation and the expression of bone-degrading genes. To gain mechanistic insights, we employed both in vivo and in vitro experiments, utilizing cellular and molecular approaches, including osteoclast differentiation assays and RNA-seq in combination with ChIP-seq.

View Article and Find Full Text PDF

Oleandrin inhibits osteoclast differentiation by targeting the LRP4/MAPK/NF-κB signalling pathway to treat osteoporosis.

Int Immunopharmacol

January 2025

Department of Orthopedic, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China; Department of Emergency and Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, China. Electronic address:

Osteoporosis is a common inflammation-related disease in which the release of proinflammatory cytokines promotes bone loss. Oleandrin is a monomer compound extracted from the leaves of the Nerium oleander plant, has been shown to exert an anti-inflammatory effect on a variety of inflammation-related diseases. However, its role in osteoporosis and the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!