Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4744976 | PMC |
http://dx.doi.org/10.1111/ele.12469 | DOI Listing |
Chemphyschem
December 2024
University of Ioannina, Chemistry, 45110, Ioannina, GREECE.
The solvation structure and dynamics of the thiocyanate anion at infinite dilution in mixed N, N-Dimethylformamide (DMF)-water liquid solvents was studied using classical molecular dynamics simulation techniques. The results obtained have indicated a preferential solvation of the thiocyanate anions by the water molecules, due to strong hydrogen bonding interactions between the anion and water molecules. A first hydration shell at short intermolecular distances is formed around the SCN- anion consisting mainly by water molecules, followed by a second shell consisting by both DMF and water molecules.
View Article and Find Full Text PDFChembiochem
December 2024
University of Pittsburgh, Department of Chemistry, 219 Parkman Ave., 15260, Pittsburgh, UNITED STATES OF AMERICA.
The threat posed by bacteria resistant to common antibiotics creates an urgent need for novel antimicrobials. Non-ribosomal peptide natural products that bind Lipid II, such as vancomycin, represent a promising source for such agents. The fungal defensin plectasin is one of a family of ribosomally produced miniproteins that exert antimicrobial activity via Lipid II binding.
View Article and Find Full Text PDFJAMA Neurol
December 2024
Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
Importance: Gestational hypertension, preeclampsia, and eclampsia are established risk factors for stroke and dementia later in life. Whether these pregnancy complications are associated with an increased risk of new-onset neurological disorders within months to years after giving birth is not known.
Objective: To explore whether gestational hypertension, preeclampsia, and eclampsia are associated with new-onset migraine, headache, epilepsy, sleep disorder, or mental fatigue within months to years after giving birth.
Phys Rev Lett
December 2024
Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
New unconventional compensated magnets with a p-wave spin polarization protected by a composite time-reversal translation symmetry have been proposed in the wake of altermagnets. To facilitate the experimental discovery and applications of these unconventional magnets, we construct an effective analytical model. The effective model is based on a minimal tight-binding model for unconventional p-wave magnets that clarifies the relation to other magnets with p-wave spin-polarized bands.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Systems Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India.
Isolation of primary keratinocyte stem cells (KSCs) from neonatal mouse epidermis is essential for studying skin physiology and related disorders. Traditional methods often struggle to balance keratinocyte proliferation and differentiation, and although recent advancements using low-calcium culture conditions have improved these techniques, protocols remain scattered. This study presents a streamlined approach to expand mouse KSCs in low-calcium medium (<0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!