Serological surveys have confirmed Anaplasma marginale and Anaplasma phagocytophilum infections in dromedary camels, but molecular surveys and genetic characterisation of camel-associated Anaplasma species are lacking. In this study, we detected tick-borne Anaplasmataceae in 30 of 100 (30%) healthy dromedary camels screened using a combined 16S rRNA-groEL PCR-sequencing approach. Nucleotide sequencing confirmed Anaplasmataceae genome presence in 28 of the 33 16S rRNA PCR-positive samples, with two additional positive samples, for which 16S rRNA sequence data were ambiguous, being identified by groEL gene characterisation. Phylogenetic analyses of a 1289 nt segment of the 16S rRNA gene confirmed the presence of a unique Ehrlichia lineage and a discrete Anaplasma lineage, comprising three variants, occurring at an overall prevalence of 4% and 26%, respectively. Genetic characterisation of an aligned 559 nt groEL gene region revealed the camel-associated Anaplasma and Ehrlichia lineages to be novel and most closely related to Anaplasma platys and Ehrlichia canis. Based on the confirmed monophyly, minimum pairwise genetic distances between each novel lineage and its closest sister taxon, and the inability to isolate the bacteria, we propose that Candidatus status be assigned to each. This first genetic characterisation of Anaplasmataceae from naturally infected, asymptomatic dromedary camels in Saudi Arabia confirms the presence of two novel lineages that are phylogenetically linked to two pathogenic canid species of increasing zoonotic concern.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vetmic.2015.06.001 | DOI Listing |
Curr Microbiol
January 2025
Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute (RVSRI), Karaj, Iran.
Brucellosis, a zoonotic disease caused by Brucella spp. globally, is of great significance not only to livestock but also to public health. The most significant of the twelve species is Brucella melitensis.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Biotechnology, Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050040, Kazakhstan.
Background: Equine milk, including its whey proteins, is a source of nutrients and functional components in the human diet, and is especially beneficial for people with weakened immune systems, newborns, and athletes. Objectives Whey proteins in equine milk constitute approximately 20% of the total protein content and include various fractions such as albumin, globulin, and lactoferrin. Lactoferrin is one of the most extensively studied whey proteins in equine milk.
View Article and Find Full Text PDFSci One Health
July 2024
Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, Xinjiang Uygur Autonomous Region, China.
Background: Camels, known as the enduring "ships of the desert," host a complex gut microbiota that plays a crucial role in their survival in extreme environments. However, amidst the fascinating discoveries about the camel gut microbiota, concerns about antibiotic resistance have emerged as a significant global challenge affecting both human and animal populations. Indeed, the continued use of antibiotics in veterinary medicine has led to the widespread emergence of antibiotic-resistant bacteria, which has worsened through gene transfer.
View Article and Find Full Text PDFJ Hered
January 2025
Victory Genomics, Inc, Guilford, CT 06437, USA.
The Dromedary camel has a remarkable history amongst cultures across Asia and northern Africa, serving multiple purposes ranging from providing milk, textiles, racing, and acting as pack animals. Recent genetic studies have revealed that many dromedaries are genetically homogenous, indicating that they do not represent different breeds, advocating for camel 'type' over camel 'breed'. In this study, we leveraged whole genome sequencing (WGS) to sequence 15 Jordanian Alia camels for the first time, alongside 9 Jordanian mixed camels from diverse locations within the country.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
April 2025
Camel Forensic Laboratory, Central Veterinary Research Laboratory, Dubai, UAE.
Rationale: The use of benzimidazole-class novel psychoactive substances has significantly increased worldwide raising concerns about potential misuse and doping in animal sports such as camel racing. Understanding the metabolism of these substances is critical for developing reliable detection methods to ensure fair competition and animal welfare.
Methods: In vitro studies were conducted using homogenized camel liver samples to replicate metabolic processes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!