Study of the natural history of Gaucher disease has revealed marked phenotypic variation. Correlations to genotypes could provide insight into individual susceptibility to varying disease severity, which may impact whole-life medical care, reproductive decisions, and therapeutic choices for affected families. Importantly, pre-symptomatic or prospective interventions or the use of therapies with significant risk require accurate risk-benefit analyses based on the prognosis for individual patients. The body of international data held within the International Collaborative Gaucher Group (ICGG) Gaucher Registry provides an unprecedented opportunity to characterize the phenotypes of Gaucher disease types 1 and 3 and to appreciate demographic and ethnic factors that may influence phenotypes. The diversity of GBA gene mutations from patients with Gaucher disease represented in the ICGG Gaucher Registry database and in the literature provides the basis for initial genotype/phenotype correlations, the outcomes of which are summarized here.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajh.24063DOI Listing

Publication Analysis

Top Keywords

gaucher disease
16
icgg gaucher
12
gaucher registry
12
gaucher
8
disease types
8
types phenotypic
4
phenotypic characterization
4
characterization large
4
large populations
4
populations icgg
4

Similar Publications

There are currently at least 70 characterised lysosomal storage diseases (LSD) resultant from inherited single-gene defects. Of these, at least 30 present with central nervous system (CNS) neurodegeneration and overlapping aetiology. Substrate accumulation and dysfunctional neuronal lysosomes are common denominator, but how variants in 30 different genes converge on this central cellular phenotype is unclear.

View Article and Find Full Text PDF

Emerging biomarkers in Gaucher disease.

Adv Clin Chem

January 2025

Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States. Electronic address:

Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe.

View Article and Find Full Text PDF

Recently, a novel African ancestry specific Parkinson's disease (PD) risk signal was identified at the gene encoding glucocerebrosidase ( ). This variant (rs3115534-G) is carried by ∼50% of West African PD cases and imparts a dose-dependent increase in risk for disease. The risk variant has varied frequencies across African ancestry groups, but is almost absent in European and Asian ancestry populations.

View Article and Find Full Text PDF

Developing Allosteric Chaperones for -Associated Disorders-An Integrated Computational and Experimental Approach.

Int J Mol Sci

December 2024

Gain Therapeutics Sucursal en España, Parc Científic de Barcelona, 08028 Barcelona, Spain.

Mutations in the gene, which encodes the lysosomal enzyme glucocerebrosidase (GCase), are associated with Gaucher disease and increased risk of Parkinson's disease. This study describes the discovery and characterization of novel allosteric pharmacological chaperones for GCase through an innovative computational approach combined with experimental validation. Utilizing virtual screening and structure-activity relationship optimization, researchers identified several compounds that significantly enhance GCase activity and stability across various cellular models, including patient-derived fibroblasts and neuronal cells harboring mutations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!