Disruption of thyroid hormone (TH) signaling can compromise vital processes both during development and in the adult. We previously reported on high-throughput screening experiments for man-made TH disruptors using a stably integrated line of rat pituitary cells, GH3.TRE-Luc, in which a thyroid hormone receptor (TR) response element drives luciferase (Luc) expression. In these experiments, several retinoid/rexinoid compounds activated the reporter. Here we show that all-trans and 13-cis retinoic acid appear to function through the heterodimer partners of TRs, retinoid-X receptors (RXRs), as RXR antagonists abrogated retinoid-induced activation. The retinoids also induced known endogenous TR target genes, showing good correlation with Luc activity. Synthetic RXR-specific agonists significantly activated all tested TR target genes, but interestingly, retinoid/rexinoid activation was more consistent between genes than the extent of T3-induced activation. In contrast, the retinoids neither activated the Luc reporter construct in transient transfection assays in the human hepatocarcinoma cell line HuH7, nor two of the same T3-induced genes examined in pituitary cells. These data demonstrate the suitability and sensitivity of GH3.TRE-Luc cells for screening chemical compound libraries for TH disruption and suggest that the extent of disruption can vary on a cell type and gene-specific bases, including an underappreciated contribution by RXRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tiv.2015.06.018 | DOI Listing |
J Reprod Immunol
December 2024
Department of Histology and Embryology, Medical School, University of Cukurova, Adana, Turkiye.
Objective: Successful embryo implantation is contingent upon the intricate interaction between the endometrium and the blastocyst. Recurrent implantation failure (RIF) signifies the clinical challenge of failing pregnancy post-transfer of high-quality embryos, fresh or frozen, in at least three in vitro fertilization (IVF) cycles, often in women under 40 years. Recent studies identify impaired blastocyst maternal tissue communication among recurrent implantation failure causes.
View Article and Find Full Text PDFThyroid Res
January 2025
Medicine Institute, Geisinger Health System, Wilkes-Barre, PA, USA.
Introduction: Thyroid disease (TD), particularly hypothyroidism, is an important etiology of hyperprolactinemia (HPRL). We conducted a systematic review of the clinical characteristics, management, and outcomes of adults (> 18 years) with this clinical association.
Materials And Methods: We searched PUBMED, SCOPUS, and EMBASE to find eligible articles published in English from any date till 15th December 2022.
Horm Mol Biol Clin Investig
January 2025
Department of Biochemistry, Faculty of Medicine, 37555 Urmia University of Medical Sciences, Urmia, Iran.
Retin Cases Brief Rep
December 2024
Department of Histopathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India.
Purpose: To report a case of bilateral anterior uveitis, pigmentary retinopathy, and pars plana exudates in a patient with Celiac disease with complete resolution of inflammation following gluten-free diet.
Methods: Retrospective case report.
Results: A 19-year-old Asian Indian girl presented with bilateral non-granulomatous anterior uveitis for the past 2 months.
Pflugers Arch
January 2025
Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, 30322, USA.
Plasma thyroid hormone (TH) binding proteins (THBPs), including thyroxine-binding globulin (TBG), transthyretin (TTR), and albumin (ALB), carry THs to extrathyroidal sites, where THs are unloaded locally and then taken up via membrane transporters into the tissue proper. The respective roles of THBPs in supplying THs for tissue uptake are not completely understood. To investigate this, we developed a spatial human physiologically based kinetic (PBK) model of THs, which produces several novel findings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!