We suggest a method for detection of highly conductive surface electron states including topological ones. The method is based on measurements of the photoelectromagnetic effect using terahertz laser pulses. In contrast to conventional transport measurements, the method is not sensitive to the bulk conductivity. The method is demonstrated on an example of topological crystalline insulators Pb(1-x)SnxSe. It is shown that highly conductive surface electron states are present in Pb(1-x)SnxSe both in the inverse and direct electron energy spectrum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4476126PMC
http://dx.doi.org/10.1038/srep11540DOI Listing

Publication Analysis

Top Keywords

highly conductive
12
conductive surface
12
surface electron
12
electron states
12
detection highly
8
topological crystalline
8
crystalline insulators
8
insulators pb1-xsnxse
8
electron
4
states topological
4

Similar Publications

Clinical Characteristics and In Vivo Confocal Microscopic Study in Candida Keratitis.

Transl Vis Sci Technol

January 2025

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

Purpose: To clarify the clinical and imaging characteristics of Candida keratitis using in vivo confocal microscopy (IVCM) for improved early diagnosis and management.

Methods: A retrospective study of 40 patients with Candida keratitis at Beijing Tongren Hospital from January 2015 to December 2023 was conducted. Data included demographics, risk factors, clinical assessments, lab tests, and IVCM images.

View Article and Find Full Text PDF

The dynamics of neuronal systems are characterized by hallmark features such as oscillations and synchrony. However, it has remained unclear whether these characteristics are epiphenomena or are exploited for computation. Due to the challenge of selectively interfering with oscillatory network dynamics in neuronal systems, we simulated recurrent networks of damped harmonic oscillators in which oscillatory activity is enforced in each node, a choice well supported by experimental findings.

View Article and Find Full Text PDF

Metabolic activity controls the emergence of coherent flows in microbial suspensions.

Proc Natl Acad Sci U S A

January 2025

Experimental Physics V, Department of Physics, University of Bayreuth, D-95447 Bayreuth, Germany.

Photosynthetic microbes have evolved and successfully adapted to the ever-changing environmental conditions in complex microhabitats throughout almost all ecosystems on Earth. In the absence of light, they can sustain their biological functionalities through aerobic respiration, and even in anoxic conditions through anaerobic metabolic activity. For a suspension of photosynthetic microbes in an anaerobic environment, individual cellular motility is directly controlled by its photosynthetic activity, i.

View Article and Find Full Text PDF

Hydrogen-bond-driven 1D assembly of carbon nanotubes dispersed in organic solvents remains challenging owing to difficulties associated with achieving high oxidation levels and uniform dispersion. Here, we introduced a bioinspired wet-spinning method that utilizes highly oxidized single-walled carbon nanotubes dispersed in organic solvents without superacid or dispersants. By incorporating submicrometer-sized graphene oxide nanosheets, we facilitated the ejection of 1.

View Article and Find Full Text PDF

Bio-Inspired Highly Stretchable and Ultrafast Autonomous Self-Healing Supramolecular Hydrogel for Multifunctional Durable Self-Powered Wearable Devices.

Small

January 2025

Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.

As skin bioelectronics advances, hydrogel wearable devices have broadened perspectives in environment sensing and health monitoring. However, their application is severely hampered by poor mechanical and self-healing properties, environmental sensitivity, and limited sensory functions. Herein, inspired by the hierarchical structure and unique cross-linking mechanism of hagfish slime, a self-powered supramolecular hydrogel is hereby reported, featuring high stretchability (>2800% strain), ultrafast autonomous self-healing capabilities (electrical healing time: 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!