Here, we present protocols describing the use of the dipeptidyl-aminopeptidase-1 (DPP1, DAPase) exoprotease-based TAGZyme system and the endoprotease, Factor Xa. Both enable the recovery of proteins free of any amino acids encoded by the vector and/or protease recognition site. They also provide the possibility of removing the proteases from the preparation of the target protein by a simple subtractive chromatography step. TAGZyme enzymes contain an uncleavable His tag for removal by Immobilized Metal Ion Affinity Chromatography (IMAC). Factor Xa can be removed using Xa Removal Resin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mie.2014.11.009 | DOI Listing |
Trans R Soc Trop Med Hyg
January 2025
Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica.
Background: The genus Metlapilcoatlus was recently erected to include six species of stout venomous snakes, known as the jumping pitvipers, which inhabit mountainous areas of Mesoamerica. This group maintains affinity with Atropoides picadoi, another jumping pitviper with restricted distribution in Costa Rica and Panama. Although the venom of A.
View Article and Find Full Text PDFJ Med Chem
December 2024
Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33607 Pessac, France.
Combining helical foldamers with α-peptides can produce α-helix mimetics with a reduced peptide character and enhanced resistance to proteolysis. Previously, we engineered a hybrid peptide-oligourea sequence replicating the N-terminal α-helical domain of p53 to achieve high affinity binding to hDM2. Here, we further advance this strategy by combining the foldamer approach with side chain cross-linking to create more constrained cell-permeable inhibitors capable of effectively engaging the target within cells.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan.
Biologically produced protein drugs are generally susceptible to degradation by proteases and often exhibit immunogenicity. To address this issue, mirror-image peptide/protein binders consisting of D-amino acids have been developed so far through the mirror-image phage display technique. Here, we develop a mirror-image protein binder derived from a monobody, one of the promising protein scaffolds, utilizing two notable technologies: chemical protein synthesis and TRAP display, an improved version of mRNA display.
View Article and Find Full Text PDFPLoS One
December 2024
Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates.
Alzheimer's disease (AD) is characterized by the aggregation of amyloid β (Aβ) peptides and the formation of plaques in the brain, primarily derived from the proteolytic degradation of amyloid precursor protein (APP). Cathepsin B (CatB) is a cysteine protease that plays a pivotal role in this process, making it a potential target for the development of anti-Alzheimer's therapies. Apart from AD, CatB is implicated in various physiological and pathological processes, including cancer.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Medicine, Huaqiao University, Quanzhou 362021, China.
Understanding the molecular targets of natural products is crucial for elucidating their mechanisms of action, mitigating toxicity, and uncovering potential therapeutic pathways. Icaritin (ICT), a bioactive flavonoid, demonstrates significant anti-tumor activity but lacks defined molecular targets. This study employs an advanced strategy integrating proteolysis targeting chimera (PROTAC) technology with quantitative proteomics to identify ICT's key targets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!