Two-dimensional (2D) (hydro)oxide materials, that is, nanosheets, enable the preparation of advanced 2D materials and devices. The general synthesis route of nanosheets involves exfoliating layered metal (hydro)oxide crystals. This exfoliation process is considered to be time-consuming, hindering their industrial-scale production. Based on in situ exfoliation studies on the protonated layered titanate H(1.07)Ti(1.73)O4⋅H2O (HTO), it is now shown that ion intercalation-assisted exfoliation driven by chemical reaction provides a viable and fast route to isolated nanosheets. Contrary to the general expectation, data indicate that direct exfoliation of HTO occurs within seconds after mixing of the reactants, instead of proceeding via a swollen state as previously thought. These findings reveal that ion intercalation-assisted exfoliation driven by chemical reaction is a promising exfoliation route for large-scale synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201502539DOI Listing

Publication Analysis

Top Keywords

ion intercalation-assisted
8
intercalation-assisted exfoliation
8
exfoliation driven
8
driven chemical
8
chemical reaction
8
exfoliation
6
rapid exfoliation
4
exfoliation subsequent
4
subsequent restacking
4
restacking layered
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!