Bone mesenchymal stem cells (BMSCs) have been an area of interest in biomedical research and tissue engineering due to their diverse differentiation abilities. In osteogenesis, bone morphogenetic proteins (BMPs), particularly BMP‑2, are important. However, the effect of BMP‑2 on the osteogenetic capacity of BMSCs remains to be fully elucidated. In the present study, primary rat BMSCs were infected with a recombinant lentivirus carrying the BMP‑2 gene (Lenti‑BMP‑2), and the effects of BMP‑2 on the activity of alkaline phosphatase (ALP) on days 3, 7, 14 and 21, and on mineralization on day 21 were evaluated. In addition, the adhesive ability of BMP‑2‑overexpressed BMSCs was detected using an adhesion assay. Following forced expression of BMP‑2 in the BMSCs, the levels of osteogenic genes, including osteopontin (OPN), osteocalcin (OC) and collagen type I (Col‑Ⅰ), were detected and the nuclear accumulation of Runt‑related transcription factor (Runx)‑2 and phosphorylated small mothers against decapentaplegic (p‑Smad) 1/5/8 was also evaluated. The results demonstrated that the rat BMSCs had been isolated, cultured and passaged from Sprague‑Dawley rat bone marrow successfully, and the third‑generation BMSCs were identified using flow cytometry with CD29 staining. The osteogenetic phenotype of the BMSCs, expressing ALP and osteocalcin, was significantly induced by BMP‑2, and the proliferation of the BMSCs was enhanced by BMP‑2. Furthermore, the adhesive potential of the BMP‑2‑overexpressed BMSCs was increased, the expression levels of OPN, OCN and Col‑Ⅰe osteogenetic factors were upregulated and the nuclear accumulation of Runx‑2 and p‑Smads1/5/8 were increased significantly. These data suggested that BMP‑2 may facilitate the osteogenetic differentiation of rat BMSCs and provide a favorable cell resource for tissue engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526091 | PMC |
http://dx.doi.org/10.3892/mmr.2015.3954 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Department of Orthopedics, Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People's Hospital), Suzhou 215200, China.
Rotator cuff tears are the most common conditions in sports medicine and attract increasing attention. Scar tissue healing at the tendon-bone interface results in a high rate of retears, making it a major challenge to enhance the healing of the rotator cuff tendon-bone interface. Biomaterials currently employed for tendon-bone healing in rotator cuff tears still exhibit limited efficacy.
View Article and Find Full Text PDFMater Today Bio
February 2025
Kunming Institute of Zoology, Chinese Academy of Sciences, PR China.
The early treatment of Osteonecrosis of Femoral Head (ONFH) remains a clinical challenge. Conventional Bone Marrow Mesenchymal Stem Cell (BMSC) injection methods often result in unsatisfactory outcomes due to mechanical cell damage, low cell survival and retention rates, inadequate cell matrix accumulation, and poor intercellular interaction. In this study, we employed a novel cell carrier material termed "3D Microscaffold" to deliver BMSCs, addressing these issues and enhancing the therapeutic effects of cell therapy for ONFH.
View Article and Find Full Text PDFRegen Biomater
November 2024
Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215000, PR China.
A biomechanical environment constructed exploiting the mechanical property of the extracellular matrix and external loading is essential for cell behaviour. Building suitable mechanical stimuli using feasible scaffold material and moderate mechanical loading is critical in bone tissue engineering for bone repair. However, the detailed mechanism of the mechanical regulation remains ambiguous.
View Article and Find Full Text PDFJ Gene Med
January 2025
Department of Orthopedic Surgery, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen City, Guangdong, China.
Purpose: Postmenopausal osteoporosis (PMO) is mainly concerned with the imbalance of bone resorption and bone formation. Icariin (ICA) plays a vital role in bone protection. This study investigated the mechanism of ICA in PMO rats.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Foshan Clinical Medical School of Guangzhou University of Chinese Medicine, Guangdong Province, Foshan 528031, China. Electronic address:
Due to the limited ability to self-repair, the regeneration of bone critical-sized defects (CSD) is a significant challenge. Bone tissue engineering scaffolds are considered promising candidates for CSD repair, but low cell infiltration efficiency and a lack of nutrients greatly restrict bone regeneration abilities. Herein, we developed a dynamic culturing of large biomimetic bone scaffolds, PCL/GelMA@cells that combining 3D printed polycaprolactone (PCL) multi-channel cylinder with gelatin methacryloyl (GelMA) encapsulated with bone marrow mesenchymal stem cells (BMSCs) and rat aortic endothelial cells (RAECs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!