Human epidermal growth factor receptor (EGFR) has become a well-established target for the treatment of non-small cell lung cancer (NSCLC). However, a large number of in-frame deletion, insertion and duplication mutations in the EGFR tyrosine kinase (TK) domain have been observed to alter drug response to such a kinase target. Thus, a systematic investigation of the intermolecular interactions between the clinical small-molecule agents and various EGFR in-frame mutants would help to establish a complete picture of drug response to kinase mutations in lung cancer, and to design new EGFR inhibitors with high potency and selectivity to target drug-resistant mutants. Here, we describe a combined pipeline to explore the drug response of five representative EGFR inhibitors, including three FDA-approved agents (gefitinib, erlotinib and lapatinib) and two compounds under clinical development (AEE788 and TAK-285) to a number of clinically relevant EGFR in-frame mutations, aiming at a comprehensive understanding of molecular mechanism and biological implication underlying drug resistance and sensitivity to EGFR in-frame mutations. It was found that the insertion and duplication mutations in exon 20 can generally cause drug resistance to EGFR due to the reduced size of kinase's active pocket, while deletion mutations in exon 19 associate closely with increased inhibitor sensitivity to EGFR by establishing additional non-bonded interactions across complex interface, including hydrogen bonds, cation-π interactions and hydrophobic contacts.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10799893.2015.1015739DOI Listing

Publication Analysis

Top Keywords

lung cancer
12
drug response
12
egfr in-frame
12
egfr
10
epidermal growth
8
growth factor
8
factor receptor
8
receptor egfr
8
non-small cell
8
cell lung
8

Similar Publications

Background: Interstitial lung abnormalities (ILA) are a proposed imaging concept. Fibrous ILA have a higher risk of progression and death. Clinically, computed tomography (CT) examination is a frequently used and convenient method compared with pulmonary function tests.

View Article and Find Full Text PDF

Somatic stem cell pools comprise diverse, highly specialized subsets whose individual contribution is critical for the overall regenerative function. In the bone marrow, myeloid-biased hematopoietic stem cells (myHSCs) are indispensable for replenishment of myeloid cells and platelets during inflammatory response but, at the same time, become irreversibly damaged during inflammation and aging. Here we identify an extrinsic factor, semaphorin 4A (Sema4A), which non-cell-autonomously confers myHSC resilience to inflammatory stress.

View Article and Find Full Text PDF

Quantitative structure-property relationship (QSPR) modeling has emerged as a pivotal tool in the field of medicinal chemistry and drug design, offering a predictive framework for understanding the correlation between chemical structure and physicochemical properties. Topological indices are mathematical descriptors derived from the molecular graphs that capture structural features and connectivity, playing a crucial role in QSPR analysis by quantitatively relating chemical structures to their physicochemical properties and biological activities. Lung cancer is characterized by its aggressive nature and late-stage diagnosis, often limiting treatment options and significantly impacting patient survival rates.

View Article and Find Full Text PDF

AI decision support systems can assist clinicians in planning adaptive treatment strategies that can dynamically react to individuals' cancer progression for effective personalized care. However, AI's imperfections can lead to suboptimal therapeutics if clinicians over or under rely on AI. To investigate such collaborative decision-making process, we conducted a Human-AI interaction study on response-adaptive radiotherapy for non-small cell lung cancer and hepatocellular carcinoma.

View Article and Find Full Text PDF

Role of PGC-1α in the proliferation and metastasis of malignant tumors.

J Mol Histol

January 2025

Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.

Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!