Several epidemiological studies indicate that children born from mothers exposed to infections during gestation, have an increased risk to develop neurological disorders, including schizophrenia, autism and cerebral palsy. Given that it is unknown if astrocytes and their crosstalk with neurons participate in the above mentioned brain pathologies, the aim of this work was to address if astroglial paracrine signaling mediated by Cx43 and Panx1 unopposed channels could be affected in the offspring of LPS-exposed dams during pregnancy. Ethidium uptake experiments showed that prenatal LPS-exposure increases the activity of astroglial Cx43 and Panx1 unopposed channels in the offspring. Induction of unopposed channel opening by prenatal LPS exposure depended on intracellular Ca levels, cytokine production and activation of p38 MAP kinase/iNOS pathway. Biochemical assays and Fura-2AM/DAF-FM time-lapse fluorescence images revealed that astrocytes from the offspring of LPS-exposed dams displayed increased spontaneous Ca dynamics and NO production, whereas iNOS levels and release of IL-1β/TNF-α were also increased. Interestingly, we found that prenatal LPS exposure enhanced the release of ATP through astroglial Cx43 and Panx1 unopposed channels in the offspring, resulting in an increased neuronal death mediated by the activation of neuronal P2X receptors and Panx1 channels. Altogether, this evidence suggests that astroglial Cx43 and Panx1 unopposed channel opening induced by prenatal LPS exposure depended on the inflammatory activation profile and the activation pattern of astrocytes. The understanding of the mechanism underlying astrocyte-neuron crosstalk could contribute to the development of new strategies to ameliorate the brain abnormalities induced in the offspring by prenatal inflammation. GLIA 2015;63:2058-2072.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/glia.22877 | DOI Listing |
Front Immunol
January 2025
The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States.
Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host response to infections that is initiated by the body's innate immune system. Nearly a decade ago, we discovered that bacterial lipopolysaccharide (LPS) and serum amyloid A (SAA) upregulated Connexin 43 (Cx43) and Pannexin 1 (Panx1) hemichannels in macrophages. When overexpressed, these hemichannels contribute to sepsis pathogenesis by promoting ATP efflux, which intensifies the double-stranded RNA-activated protein kinase R (PKR)-dependent inflammasome activation, pyroptosis, and the release of pathogenic damage-associated molecular pattern (DAMP) molecules, such as HMGB1.
View Article and Find Full Text PDFFront Cell Dev Biol
July 2024
Departamento de Neurología, Escuela de Medicina and Centro Interdisciplinario de Neurociencias, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
Alcohol, a toxic and psychoactive substance with addictive properties, severely impacts life quality, leading to significant health, societal, and economic consequences. Its rapid passage across the blood-brain barrier directly affects different brain cells, including astrocytes. Our recent findings revealed the involvement of pannexin-1 (Panx1) and connexin-43 (Cx43) hemichannels in ethanol-induced astrocyte dysfunction and death.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
October 2024
Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, United States.
In avascular wound repair, calcium signaling events are the predominant mechanism cells use to transduce information about stressors in the environment into an effective and coordinated migratory response. Live cell imaging and computational analysis of corneal epithelial wound healing revealed that signal initiation and propagation at the wound edge are highly ordered, with groups of cells engaging in cyclical patterns of initiation and propagation. The cells in these groups exhibit a diverse range of signaling behavior, and dominant "conductor cells" drive activity in groups of lower-signaling neighbors.
View Article and Find Full Text PDFBiol Res
June 2024
Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
Background: Spreading depression (SD) is an intriguing phenomenon characterized by massive slow brain depolarizations that affect neurons and glial cells. This phenomenon is repetitive and produces a metabolic overload that increases secondary damage. However, the mechanisms associated with the initiation and propagation of SD are unknown.
View Article and Find Full Text PDFBiol Res
April 2024
Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
Background: Astrocytes Ca signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca signals in astrocytes. Importantly, astrocytes express the Ca-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca signals by triggering Ca influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca homeostasis modulator 1 (CALHM1) channels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!